화학공학소재연구정보센터
Revue de l Institut Francais du Petrole, Vol.52, No.3, 349-360, 1997
On board hydrogen generation for fuel cell powered electric cars - A review of various available techniques
Various methods allowing onboard hydrogen generation for fuel cell powered electric cars are reviewed. The following primary fuels are considered: ammonia, methanol, ethanol, and hydrocarbons. The catalytic cracking of ammonia allows generation of a CO2-free mixture containing 75% hydrogen, which is consequently suitable without subsequent purification for the supply of alkaline fuel cells. The problems posed by this primary fuel are toxicity in the event of leaks and the risk of generating nitrogen oxides in the catalytic combustion of the cell effluent. Methanol, ethanol, and the liquid or gas hydrocarbons also allow the generation of hydrogen-rich mixes, either by catalytic steam reforming or by partial oxidation. The gas obtained in this way contains a large amount of CO2 and CO, however, and its use requires a prior purification treatment. Except for use in high-temperature cells, the CO concentration must be reduced to a very low level (a few ppm). The CO2, however. may be kept for the supply of acid electrolyte cells, although it must be eliminated for use with alkaline cells. All these methods are commonly used in industry, but the design of small fully automated facilities allowing fast frequent starting and stopping as well as continuous load variations without loss of performance or pollutant emissions is still a very delicate and uncertain matter.