화학공학소재연구정보센터
Rheologica Acta, Vol.34, No.6, 534-543, 1995
Determination of yield stress fluid behaviour from inclined plane test
The aim of this paper is to determine precisely under which conditions an inclined plane can be used as a rheometer, which could represent a practical and rapid technique for various types of industrial or natural viscoplastic coarse suspensions. We first examine its efficiency and relevancy for determining fluid yield stress in a straight way by measuring the deepest fluid layer able to stay on the inclined plane. We have made experiments with different materials (clay-water suspensions) whose yield stress ranged from 35 to 90 Pa, using 1 m long open rectangular channels with a slope ranging from 10 to 30 degrees and a width ranging from 5 to 25 cm. Our procedure involved measuring the final fluid depth far from edges a long time after the end of the slow gravity-induced emptying of a dam placed upstream. The fluid yield stress was also estimated independently by fitting a Herschel-Bulkley model to simple shear rheometry data obtained within a relatively wide shear rate range. A good agreement between inclined rectangular channel tests and independent usual rheometrical tests is obtained even for aspect ratios (flow depth to channel width ratio) as large as 1 when one assumes that, when the fluid has stopped, the side and bottom wall shear stresses are equal to the fluid yield stress. These results prove the efficiency of the inclined plane test for determining yield stress when appropriate experimental precautions are taken for both tests. In addition we examine the possibility of determining the simple shear flow curve of a mud suspension from fluid depth, velocity and discharge measurements of different steady flows in a wide open channel (8 m long; 60 cm wide) equipped with a recirculating system. The results obtained from inclined plane tests are in good agreement with independent rheometrical data (with torsional geometries). However it is technically difficult to cover a wide shear rate range from the inclined plane technique since this requires a rather wide channel flow rate range.