화학공학소재연구정보센터
Rheologica Acta, Vol.35, No.1, 24-38, 1996
Some tests of constitutive equations for entangled polymers based on planar-extension flow histories in a periodically constricted channel
Stress and velocity were determined locally by birefringence measurements and laser Doppler velocimetry for a mildly entangled polystyrene solution flowing at steady state in a rectangular channel with sinusoidally varying wall spacing. Having measured both the velocity and stress fields, we were able to test constitutive equations locally, i.e., without solving the equations of motion for the entire flow. Four were examined for the periodic planar extensions on the channel centerplane: the Newtonian model, the Lodge network model, the Doi-Edwards tube model, and the Wagner-Schaeffer modification of Doi-Edwards. High enough Weissenberg and Deborah numbers were reached to produce sizable departures from the Newtonian predictions. The Doi-Edwards model underpredicted the stress, as did Wagner-Schaeffer, although to a lesser extent. Predictions of the Lodge model were best of all, a surprising result in view of its inadequacy for simple shear deformations. The predictions of the Lodge model, without parameter adjustment, agreed remarkably well with the planar extension data over the accessible range for our apparatus: Deborah numbers up to 2.0, extensional Weissenberg numbers up to 6.5, and a maximum extension ratio of about 2.3.