Science, Vol.282, No.5392, 1302-1305, 1998
Ultrastable mesostructured silica vesicles
A family of mesoporous molecular sieves (denoted MSU-G) with vesiclelike hierarchical structures and unprecedented thermal (1000 degrees C) and hydrothermal stabilities (more than 150 hours at 100 degrees C) associated with high SiO4 cross-linking was prepared through a supramolecular assembly pathway that relies on hydrogen bonding between electrically neutral gemini surfactants of the type CnH2n+1NH(CH2)(2)NH2 and silica precursors derived from tetraethylorthosilicate. The vesicle shells are constructed of one or more undulated silica sheets that are about 3 nanometers thick with mesopores (average diameters from 2.7 to 4.0 nanometers) running both parallel and orthogonal to the silica sheets, which makes the framework structure bicontinuous and highly accessible. Catalytic metal ion centers [for example, Ti(IV) and Al(III)] have been incorporated into the framework with the retention of hierarchical structure.
Keywords:MESOPOROUS MOLECULAR-SIEVES;ELECTRON-MICROSCOPY;SURFACEPATTERNS;LAMELLAR SILICAS;PHASE-BEHAVIOR;MORPHOGENESIS;MCM-41