Automatica, Vol.34, No.12, 1521-1530, 1998
Simultaneous constrained model predictive control and identification of DARX processes
In this work, we formulate a new approach to simultaneous constrained model predictive control and identification (MPCI). The proposed approach relies on the development of a persistent excitation (PE) criterion for processes described by DARX models. That PE criterion is used as an additional constraint in the standard on-line optimization of MPC. The resulting on-line optimization problem of MPCI is handled by successively solving a series of semi-definite programming problems. Advantages of MPCI in comparison to other closed-loop identification methods are (a) Constraints on process inputs and outputs are handled explicitly, (b) Deterioration of output regulation is kept to a minimum, while closed-loop identification is performed. The applicability of the method is illustrated by a number of simulation studies. Theoretical and computational issues for further investigation are suggested.