화학공학소재연구정보센터
Automatica, Vol.34, No.12, 1607-1612, 1998
On stability of constrained receding horizon control with finite terminal weighting matrix
In this paper, a new stabilizing receding horizon control, based on a finite input and state horizon cost with a finite terminal weighting matrix, is proposed for time-varying discrete linear systems with constraints. We propose matrix inequality conditions on the terminal weighting matrix under which closed-loop stability is guaranteed for both cases of unconstrained and constrained systems with input and state constraints. We show that such a terminal weighting matrix can be obtained by solving a linear matrix inequality (LMI). In the case of constrained time-invariant systems, an artificial invariant ellipsoid constraint is introduced in order to relax the conventional terminal equality constraint and to handle constraints. Using the invariant ellipsoid constraints, a feasibility condition of the optimization problem is presented and a region of attraction is characterized for constrained systems with the proposed receding horizon control.