화학공학소재연구정보센터
Separation Science and Technology, Vol.30, No.6, 899-915, 1995
The Adsorption and Desorption Characteristics of EDTA-Chelated Copper-Ion by Activated Carbon
This paper addresses the effect of EDTA, a strong agent, on the removal of copper ion from solutions using activated carbon adsorption. Experimental studies indicate the presence of EDTA significantly altered the adsorption behavior of copper on the activated carbon due to the formation of copper chelate species in the solution. The adsorption isotherms and kinetics were found to be strong functions of solution pH and the ratio of copper ion and EDTA concentrations. Adsorption of EDTA-Cu chelates was found to be more favorable than those of free copper ion and unbound EDTA species in the solution. Experimental results indicated that the desorption of chelated copper ion from activated carbon by NaOH and HClO4 solutions was influenced by the initial adsorption conditions. A significantly higher quantity of copper ion was recovered with HClO4 than with NaOH. Combining the adsorption and desorption data of copper and EDTA, and an understanding of the species distribution of copper in the presence of EDTA, the behavior of the adsorption of EDTA-chelated copper on the activated carbon was described. The predominant adsorbed copper species was the chelated form, CuEDTA(2-), which can be adsorbed on activated carbon surfaces with either the Cu end or the EDTA end bonding directly to the surface.