화학공학소재연구정보센터
Separation Science and Technology, Vol.34, No.3, 369-390, 1999
Alcohol/ether separation by pervaporation. High performance membrane design
Several routes were investigated to design high performance membranes for the separation of tert-butyl ethers (octane enhancers) from alcohols by pervaporation. These routes aim at incorporating Lewis base groups into good film-forming polymers with different structures. The Lewis base groups showed a high affinity to alcohols in screening tests, thus imparting high pervaporation selectivity to the polymer materials. They led to several membranes able to extract pure ethanol out of the azeotropic mixture, but with very low permeation rates. Further modifications of the polymer structure allowed us to synthesize materials with greatly enhanced transfer rates and with acceptable selectivity for industrial applications. Structure-property relationships were derived from sorption and pervaporation data for a qualitative prediction of the effect of polymer structure on the flux and selectivity. For these solvent-polymer systems the diffusion phenomenon appears to further improve the pervaporation selectivity for alcohol compared with that given by the sorption process at the membrane face.