International Journal of Energy Research, Vol.30, No.14, 1130-1145, 2006
Study of a longitudinal flux permanent magnet linear generator for wave energy converters
A directly coupled linear permanent magnet generator of longitudinal flux-type is investigated. The generator will be used for power take-off in a wave energy converter. A combined field- and circuit model, solved by a time stepping finite element technique, is used to model and analyse the electromagnetic behaviour of the machine. A large number of simulations form the basis of a design study where the influence of armature current level, number of cables per slot, and pole width is investigated with respect to efficiency, generator size, and the load angle. A case study is performed for a chosen generator design. The electromagnetic behaviour is examined both for nominal load and for overloads. The generator has a nominal output power of 10 kW for a constant piston speed of 0.7 m s(-1). The electromagnetic efficiency at nominal load is 86.0%, the load angle 6.6 degrees, and the power fluctuation 1.3%. At 300% overload the load angle barely exceeds 12 degrees and the cable temperature is below 25 degrees C provided that the stator back is thermally connected to the sea water. The numerical calculations have been verified for small speeds by experiments. Copyright (c) 2006 John Wiley & Sons, Ltd.
Keywords:design methodology;finite element;linear synchronous generators;permanent magnet;wave energy converter