Solar Energy Materials and Solar Cells, Vol.59, No.1, 115-124, 1999
A CdTe/PMeT photovoltaic structure formed by electrodeposition and processing
CdTe thin films were electrodeposited from an ethylene-glyco-based bath by the galvanostatic method. As-deposited and tellurized films were characterized by structural, optoelectronic and photoelectrochemical methods. The film stoichiometry improved after tellurization of the film at 300 degrees C by a technique called chemical vapor transport by Gas (CVTG) in a tubular furnace. Tellurized films showed near stoichiometry with p-type conductivity in the bulk and n-type surface conductivity. Schottky barrier type photovoltaic junctions were obtained using a heavily doped PMeT (poly-3(methylthiophene), prepared by electropolymerization, displaying nearly metallic behavior, and CdTe obtained by electrodeposition. A solar to electrical conversion efficiency of the order of 1% was obtained in the case of PMeT/CdTe junction.