화학공학소재연구정보센터
Biomass & Bioenergy, Vol.19, No.2, 63-102, 2000
Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks
A technical evaluation of stillage characterization, treatment, and by-product recovery in the ethanol industry was performed through a review of the scientific literature, with particular emphasis on solutions pertinent to a cellulosic-based ethanol production system. This effort has generated substantial information supporting the viability of anaerobic digestion for stillage treatment followed by land application on biomass crops for nutrient recovery. Generally, the characteristics of stillage from cellulosic materials appear comparable to those of conventional sugar-and starch-based feedstocks. However, the data on cellulosic stillage characteristics and treatment parameters are extremely limited and highly variable. This has significant impacts on the capital costs and biogas recovery of anaerobic treatment systems predicted from these data. In addition, technical questions remain unanswered with regard to stillage toxicity from untested feedstocks and the impact of heavy metal leaching when acid hydrolysis reactors are fabricated from corrosion-resistant alloys. Thermophilic anaerobic digestion of ethanol stillage achieves similar treatment efficiencies and methane yields compared to mesophilic treatment, but at almost twice the organic loading rate. Therefore, application of thermophilic anaerobic digestion would improve process economics, since smaller digesters and less stillage cooling are required. Downstream processes for stillage utilization and by-product recovery considered worthy of continued investigation include the production of feed (from single cell protein and/ or algae production), color removal, and production of calcium magnesium acetate. This study finds that sustainable and economically viable solutions are available for mitigating the environmental impacts which result from large-scale biomass-to-ethanol conversion facilities. However, further research in some areas is needed to facilitate successful implementation of appropriate technology options. (C) 2000 Elsevier Science Ltd. All rights reserved.