Transport in Porous Media, Vol.22, No.2, 161-180, 1996
Mixing with first-order decay in variable-velocity porous media flow
The transport and mixing of solutes undergoing first-order decay is central to many problems in groundwater hydrology. Mixing in porous media flow occurs due to advective dilution, hydrodynamic dispersion, and molecular diffusion. Mixing is stronger in regions of higher velocity, and weaker in slower-moving regions. Two-dimensional numerical experiments show that concentration profiles normal to the flow direction are displaced toward regions of slower flow in a flow field with a velocity gradient. Variable-velocity flow fields occur in subsurface flow around permeability heterogeneities, between recirculation cells, and in flow driven by natural convection. We examine two-dimensional solute concentration fields rather than breakthrough curves since for many complicated flow patterns, the breakthrough curve cannot discern important details of the concentration field. For the case of a species undergoing first-order decay, the effect of parent accumulation in regions of low velocity is enhanced for the daughter species because (i) the rate of daughter production is proportional to the local concentration of parent, and (ii) mixing is proportional to the local velocity. The resulting displacement of concentration profiles toward low-velocity regions may have important consequences for subsurface radionuclide transport and also for flows in chemically reactive systems and strongly coupled systems.