화학공학소재연구정보센터
Transport in Porous Media, Vol.29, No.1, 99-125, 1997
A similarity solution for oil lens redistribution including capillary forces and oil entrapment
Redistribution of a LNAPL lens (oil) at the phreatic surface is described using a multiphase flow model, with emphasis on the effect of oil entrapment by water. The flow process is analyzed under the assumption that the vertical capillary and gravitational forces balance. Vertical integration leads to explicit functions which approximate the relations between the free oil volume per unit lateral area and the vertically averaged oil relative permeability on the one hand and the vertical position of the interface between zones with either two or three phases on the other hand. A linear relation between the trapped and free oil volume per unit lateral area approximates the vertically integrated nonlinear expression for the trapped oil saturation. The resulting differential equation admits a similarity solution describing the lateral spreading of free oil and the amount and location of trapped oil. Comparison with illustrative numerical computations, which are based on the nonreduced flow model in a two-dimensional planar or axisymmetric domain, shows that the analytical solution provides a good approximation of the free oil distribution at all later times.