화학공학소재연구정보센터
Transport in Porous Media, Vol.34, No.1, 143-157, 1999
Transport of multi-electrolytes in charged hydrated biological soft tissues
A mechano-electrochemical theory for charged hydrated soft tissues with multielectrolytes was developed based on the continuum mixture theory. The momentum equations for water and ions were derived in terms of a mechanochemical force (gradient of water chemical potential), electrochemical forces (gradient of Nernst potentials) and an electrical force (gradient of electrical potential). The theory was shown to be consistent with all existing specialized theories. Using this theory, some mechano-electrokinetic properties of charged isotropic tissues were studied. The well-known Hodgkin-Huxley equation for resting cell membrane potential was derived and the phenomenon of electro-osmotic flow in charged hydrated soft tissues was investigated. Analyses show that the tissue fixed charge density plays an important role in controlling the transport of water and ions in charged hydrated soft tissues.