화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.1, 43-47, February, 2001
세라믹막을 이용한 포도당 정제 및 농축 공정의 특성
Characteristics of Glucose Purification & Concentration Process Using a Ceramic Membrane
E-mail:
초록
세라믹막을 이용하여 포도당 정제를 수행하였으며, 영향인자인 온도와 선속도, 포도당 농도 그리고 막간압력을 변화시키면서 플럭스의 변화를 살펴보았다. 플럭스는 원액의 온도, 막간압력 그리고 선속도가 증가할수록 증가하였고, 농축비(retentate) 16-18배에서 급격한 플럭스의 감소를 알 수 있었다. 이때 diafiltration의 필요성을 느낄 수 있었고 막간의 압력은 1bar에서 2bar사이에서 적정한 플럭스를 유지할 수 있었다. 막의 세척시에는 cross flow의 방법보다 cross flow와 dead end flow를 병행하여 수행한 것이 더 좋은 플럭스 회복을 보였다.
The optimal conditions of glucose syrup purification & concentration(retentate) using a ceramic membrane were investigated. The effects of operating parameters on flux were investigated by changing cross flow velocity, the transmembrane pressure(TMP) and volumetric concentration factor(VCF). The permeate flux increased with the increase of feed temperature, cross flow velocity and transmembrane pressure. The permeate flux abruptly decreased at 16 to 18 of VCF and it needs to be diafiltered. TMP was maintained between 1-2 bar to keep the moderate flux. Cleaning by the combination of cross flow with dead-end flow was better in the flux recovery than that by cross flow only.
  1. Brown HR, Macromolecules, 22, 2859 (1989) 
  2. Lee YS, Char KH, Macromolecules, 27(9), 2603 (1994) 
  3. Lee Y, Char K, Macromolecules, 31(20), 7091 (1998) 
  4. Sundararaj U, Macosko CW, Macromolecules, 28(8), 2647 (1995) 
  5. Orr CA, Adedeji A, Hirao A, Bates FS, Macosko CW, Macromolecules, 30(4), 1243 (1997) 
  6. Lyu S, Cernohous JJ, Bates FS, Macosko CW, Preprint (1998)
  7. Helfand E, Tagami Y, J. Chem. Phys., 56, 3592 (1972) 
  8. Helfand E, Tagami Y, J. Chem. Phys., 57, 1812 (1972) 
  9. Wilemski G, Fixman M, J. Chem. Phys., 58, 4009 (1973) 
  10. Wilemski G, Fixman M, J. Chem. Phys., 60, 866 (1974) 
  11. Doi M, Chem. Phys., 9, 455 (1975) 
  12. Doi M, Chem. Phys., 11, 107 (1975) 
  13. Doi M, Chem. Phys., 11, 115 (1975) 
  14. de Gennes PG, J. Chem. Phys., 76, 3316 (1982) 
  15. de Gennes PG, J. Chem. Phys., 76, 3322 (1982) 
  16. O'Shaughnessy B, Phys. Rev. Lett., 76, 3444 (1996) 
  17. Oshaughnessy B, Sawhney U, Macromolecules, 29(22), 7230 (1996) 
  18. Fredrickson GH, Phys. Rev. Lett., 76, 3444 (1996) 
  19. Fredrickson GH, Milner ST, Macromolecules, 29(23), 7386 (1996) 
  20. Carmesin I, Kremer K, Macromolecules, 21, 2819 (1988) 
  21. Deutsch HP, Binder K, J. Chem. Phys., 94, 2294 (1991) 
  22. Mueller M, Binder K, Oed W, J. Chem. Soc.-Faraday Trans., 91, 2369 (1995) 
  23. Schmid F, Muller M, Macromolecules, 28(25), 8639 (1995) 
  24. Muller M, Macromolecules, 30(20), 6353 (1997) 
  25. Werner A, Schmid F, Muller M, Binder K, J. Chem. Phys., 107(19), 8175 (1997) 
  26. Guegan P, Macosko CW, Ishizone T, Hirao A, Nakahama S, Macromolecules, 27(18), 4993 (1994) 
  27. Werner A, Schmid F, Binder K, Muller M, Macromolecules, 29(25), 8241 (1996) 
  28. Metropolis M, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E, J. Chem. Phys., 21, 1087 (1953) 
  29. Muller M, Binder K, Macromolecules, 28(6), 1825 (1995) 
  30. Broseta D, Fredrickson GH, Leibler L, Helfand E, Macromolecules, 23, 132 (1990) 
  31. Semenov AN, Macromolecules, 27(10), 2732 (1994) 
  32. Paul W, Binder K, Heermann DW, Kremer K, J. Phys. II, 1, 37 (1991) 
  33. Deutsch HP, Binder K, Macromolecules, 25, 6214 (1992) 
  34. Deutsch HP, Binder K, J. Phys. II, 3, 1049 (1993)