HWAHAK KONGHAK, Vol.39, No.1, 48-53, February, 2001
수용액에서 루타일형 이산화티타늄에 대한 구리이온(II)의 흡착
Adsorption of Copper Ion(II) on Rutile-Type Titanium Dioxide in Aqueous Solutions
E-mail:
초록
반응기에 루타일형 이산화티타늄을 50g/l 넣고 5,000rpm으로 교반하면서 구리이온의 흡착거동을 연구했다. 산성 영역에서는 Langmuir 흡착등온식이 적합했으며 흡착량이 최대가 되는 pH 9의 염기성 영역에서는 Freundlich 흡착등온식이나 Sips 흡착등온식이 적합했다. pH가 증가할수록 흡착량도 증가했으며 등전점(pH 5-6) 이하의 pH영역에서는 급격한 흡착이 이루어졌지만 등전점 이상의 pH영역에서는 완만한 흡착이 일어났다. 흡착이 진행됨에 따라 수용액의 pH값은 낮아졌다. 루타일형 이산화티타늄이 아나타제형 이산화티타늄보다 흡착량이 많았고 아나타제형 이산화티타늄 50%와 루타일형 이산화티타늄 50%를 혼합한 경우의 흡착량이 가장 많았다.
We have studied the adsorption behavior of a copper ion using the reactor containing the titanium dioxide of 50 g/l and with the stirring of 5,000 rpm. A Langmuir adsorption isotherm was suitable in the acidic region, while Freundlich and Sips adsorption isotherms were suitable in the basic region at pH 9 where maximum adsorption had been observed. The adsorption amount increased with an increased value of pH. Adsorption took place rapidly in the pH region below the isoelectric point(pH 5-6) and more slowly above the isoelectric point. The value of pH in the solution decreased during the adsorption process proceeded. The adsorption amount on the rutile-type titanium dioxide was more than that on the anatase-type titanium dioxide. And the adsorbent manufactured with the anatase type of 50wt% and the rutile type of 50wt% was much better in adsorption performance.
- Axlesson B, Piscator M, Arch. Environ. Health, 12, 360 (1966)
- Camp RT, "Water and Its Impurities," 2(nd) ed., Reinhold, New York, N.Y (1963)
- Gawer O, Sukhan V, Zaporozhets O, Colloids Surf., 147, 273 (1999)
- Lee SM, Jung CH, Moon JK, Oh WZ, Ryu SK, HWAHAK KONGHAK, 37(1), 34 (1999)
- Kim JY, Kim DS, J. KSEE, 22(3), 547 (2000)
- Hachiya H, Ashida M, Sasaki M, Karasuda M, Yasunaga T, J. Phys. Chem., 84, 2292 (1980)
- Malati MA, McEvoy M, Harvey CR, Surf. Technol., 17, 165 (1982)
- Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
- Esumi K, Ishizuki K, Otsuka H, Ono M, Ichikawa S, Yanase C, J. Colloid Interface Sci., 178(2), 549 (1996)
- Kim MS, Kim SI, Lee YJ, Kim BS, U.S. Patent, 5,602,195 (1997)
- Fahmi A, Minot C, Surf. Sci., 304, 343 (1994)
- Yang JK, Lee SM, J. KSEE, 21(12), 2235 (1999)
- Suda Y, Morimoto T, Nagao M, Langmuir, 3, 99 (1987)
- Ashida M, Saki M, Kan H, Yasunaga T, Hachiya K, Inoue T, J. Colloid Interface Sci., 67(2), 219 (1978)
- Boonstra AH, Mutsaers CAHA, J. Phys. Chem., 79(18), 1940 (1975)
- Rastogi M, Dinanath C, Singh GP, Indian J. Chem., A20, 652 (1981)
- Hitachi Ltd.: "Analysis Guide for Polarized Zeem Atomic Absorption Spectrophotometry," Hitachi Ltd., Tokyo (1987)
- Kim MS, Ph.D. Dissertation, Sungkyunkwan University, Suwon, Korea (2000)
- Sips R, J. Chem. Phys., 16(5), 490 (1948)
- Riddick TM, "Control of Colloid Stability through Zeta Potential, Vol. 1," 1(st) ed., Wynnewood, Pennsylvania (1968)
- Neufeld RD, M.S. Thesis, Northwestern University, Evanston, Illinois, U.S.A. (1964)
- Kao Corporation, "Surfactants," 1(st) ed., Kao Corporation, Tokyo (1983)
- Kim MS, Chung JG, HWAHAK KONGHAK, 38(1), 38 (2000)