화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.1, 123-129, February, 2001
무산소-호기 상향류식 생물여과 반응기에서 질산화 및 탈질 연구
A Study on the Nitrification and Denitrification of an Anoxic-Oxic Upflow Biological Aerated Filter
E-mail:
초록
본 연구에서는 생물여과 시스템에서 암모니움 부하, C/N 비, 반응기 내 공기 선속도가 생물학적 질소제거 효율에 미치는 영향을 조사하였다. 세라믹 담체가 충진된 실험실 규모의 상향류 무산소-산소 생물여과 반응기에 연속적으로 폐수를 주입하여 질산화와 탈질을 수행하였다. 다양한 범위의 C/N 비와 공기 선속도와 암모니움 부하 0.26-1.76 kg NH+4-N/m3·d 범위에서 생물여과 반응기는 90% 이상의 질산화율을 보였고 C/N 비 1에서 평균 65%의 총 질소제거 효율을 보였다. 본 연구에 사용된 생물여과 반응기의 부피당 처리속도가 매우 높아 반응기 공탑체류시간(EBCT) 1.1 시간, 수리학적 체류시간(공극률 35%) 0.38 시간에서도 높은 제거효율을 보인다. 총 질소 제거율은 공기 선속도에 따라 증가하는데 이는 질산화율이 향상된 때문이다. 일부 질소는 유기 탄소원이 거의 없는 호기성 질산화 지역에서 탈질되고 있다. 이는 생물막의 산소전달 저항으로 인해 생긴 생물막 내부의 무산소 지역에서 혐기성 암모니아 산화에 의한 것이 아닌가 사료된다.
This study was carried out to investigate the effects of influent NH4+-N load, C/N ratio, and superficial air velocity on the biological nitrogen removal efficiencies of a biological aerated filter. The laboratory scale upflow anoxic-oxic biological aerated filter(AO-BAF) with porous ceramic media was continuously operated for nitrification and denitrification with synthetic wastewater. Various influent C/N ratios and superficial air velocity had been applied to investigate their effects on nitrogen removal. The AO-BAF showed more than 90% NH4+-N removal efficiencies in the ranges of 0.26-1.76 kg NH4+-N/m3·d and an average 65% of T-N removal efficiencies at the C/N ratio of 1. The reactor is very compact in size when considering the empty bed contact time(EBCT) of 1. 1 h and the hydraulic retention time(void fraction: 35%) of 0.38 h. The average T-N removal efficiencies were increased with the superficial air velocity because of the enhanced nitrification efficiencies. Some parts of the denitrification occurred in aerobic nitrification zone where organic carbons are rarely available. It is likely that the denitrification without organic carbon may be the anaerobic ammonium oxidation due to the oxygen mass transfer resistance within the biofilms even though the mechanism is still unclear.
  1. Yoo IK, Kim GH, Kim DJ, HWAHAK KONGHAK, 36(6), 945 (1998)
  2. Frank R, JWPCF, 62, 169 (1992)
  3. Tschui M, Water Sci. Technol., 29(10-11), 53 (1994)
  4. Tom S, Allan M, John U, Chem. Ind., 19, 533 (1993)
  5. Cecen F, Gonenc I, Water Sci. Technol., 29, 409 (1994)
  6. Gupta AB, Enzyme Microb. Technol., 21(8), 589 (1997) 
  7. Astrid A, Van DG, Appl. Environ. Microbiol., 61, 1246 (1995)
  8. Strous M, Fuerst J, Kramer E, Logemann S, Muyzer G, PasSchoonen K, Webb R, Kuenen J, Jetten M, Nature, 400, 446 (1999) 
  9. Kuai L, Verstraete W, Appl. Environ. Microbiol., 64, 4500 (1998)
  10. Helmer C, Kunst S, Water Sci. Technol., 37, 183 (1998) 
  11. Okabe S, Hiratia K, Ozawa Y, Watanabe Y, Biotechnol. Bioeng., 50(1), 24 (1996) 
  12. U.S. EPA, Manual: Nitrogen Control, EPA/625/R-93/010 (1993)
  13. Suh K, Kim B, Cho M, Cho J, Kim Y, Kim S, Korean J. Biotechnol. Bioeng., 13, 238 (1998)
  14. Charles G, Joann S, Water Res., 32, 831 (1998) 
  15. APHA, Standard for the Examination of Water and Wastewater, 18th ed., Washington DC (1992)
  16. Wolfe R, Lieu NI, Izaguirre G, Means EG, Appl. Environ. Microbiol., 56, 451 (1990)
  17. Joeseph A, Water Sci. Technol., 30(12), 297 (1994)
  18. Ryhiner G, Water Sci. Technol., 29(10-11), 111 (1994)
  19. Okabe S, Ozawa Y, Hirata K, Watanabe Y, Water Res., 30, 1563 (1996) 
  20. Joo SH, Kim DJ, Yoo IK, Park K, Cha GC, Biotechnol. Lett., 22(11), 937 (2000)