화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.3, 410-418, May, 1997
무기 Fluor 하침 Polysulfone 고체막 제조에 관한 연구
Preparation of Polysulfone Membrane Containing an Inorganic Fluor
초록
비용매인 물의 첨가 또는 용매의 증발에 의해 polysulfone (PSF) 용액 필름이 응고되어 고체막으로 변형되었다. 용매의 증발로 형성된 막은 고분자 농도의 증가에 따른 유리화에 의해 고체화되었으며, 비용매인 물의 첨가에 의해 제조된 막은 용액필름의 고체화 과정에서 액체-액체 상분리 과정을 포함하였다. 상분리에 의해 형성된 polymer-rich 상과 polymer-lean 상은 전자가 유리화에 의해 침지될 때까지 성장하였다. 한편, 액체-액체 상분리가 된 용액필름은 고체로 침지되기에 앞서 재차 상분리가 유도될 수 있었다. PSF 용액 (18w/v%)에 무기물인 cerium activated yttrium silicate (CAYS)가 첨가되어 제막되었을 때, 용매 증발을 통한 유리화로 형성된 막에서는 CAYS들이 PSF에 의해 둘러 싸여졌으나, 액체-액체 상분리를 통해 고체화된 막에서는 CAYS 분말들이 PSF 구조로부터 격리되어 polymer-lean 상에 집결하였다.
Polysulfone(PSF) membranes were prepared by coagulating a PSF solution film with or without addition of water. when a solution film was solidified by evaporation of solvent, polymer molecules in the film were precipitated by vitrification. With addition of water, the cast solution was demixed by the liquid-liquid phase separation due to the nucleation of polymer-lean phase. The growth of the separated two phases continued until the polymer-rich phase vitrified. The polymer-rich phase could be demixed again before precipitation. Solid membranes for measuring the nucleotides were prepared from a casting solution including GAYS, an inorganic fluor. In the membrane solidified via vitrification by the solvent evaporation, GAYS particles were dispersed in the solidified polymer matrix. On the contrary, when the solidification process involved the liquid-liquid phase separation due to the nucleation of the polymer-lean phase, GAYS were separated from the polymer matrix and retained in the polymer-lean phase.
  1. Warner GT, Potter CG, Health Phys., 51, 385 (1986)
  2. Suontausta J, Oikari T, Webb S, "Liquid Scintillation Spectrometry," Eds. by J.E. Noakes, F. Schnhofer, and H.A. Polach, p. 173 (1993)
  3. Yang S, Hu M, Yue J, Wang X, Yue X, Lie J, Pan Z, Liu Z, "Liquid Scintillating Counting andn Organic Sciltillators," Eds. by H. Ross, J.E. Noakes, and J.P. Spaulding, p. 143, Chelsea, Michigan, Lewis Publishers (1991)
  4. U.S. Nuclear Regulatory Commission, "Radiation Safety Surveys at Medical Institutuins," Washington, D.C.: NRC; Regulatory Guide 8.23, Revision 1; January (1981)
  5. Potter CG, Tan CC, Ratcliffe PJ, Anal. Biochem., 197, 121 (1991) 
  6. Potter CG, LeZjeune S, Tech. J. Methods Cell Mole. Bio., 3, 177 (1991)
  7. Kesting RE, "Synthetic Polymeric Membranes," McGraw-Hill, New York (1971)
  8. Han MJ, Bummer PM, Jay M, Bhattacharyya D, Polymer, 36(24), 4711 (1995) 
  9. Tompa H, "Polymer Solution," Academic Press, New York (1956)
  10. Pouchly J, Zivny A, Solc K, J. Polym. Sci. Polym. Symp., 23, 245 (1968)
  11. Flory PJ, "Principles of Polymer Chemistry," Cornell Press, London (1953)
  12. Han MJ, Bhattacharyya D, Chem. Eng. Commun., 128, 197 (1994)
  13. Altena FW, Smolders CA, Macromolecules, 15, 1491 (1982) 
  14. Yilmaz L, McHugh AJ, J. Appl. Polym. Sci., 31, 99 (1986)
  15. Li S, Jiang S, Zhang Y, Desalination, 62, 79 (1987) 
  16. Han MJ, Bhattacharyya D, J. Membr. Sci., 98(3), 191 (1995) 
  17. Ziabicki A, "Fundamentals of Fiber Formation," John Wiley, New York (1986)
  18. Kelley FN, Buche FJ, J. Polym. Sci., 50, 549 (1961) 
  19. Krevelen DW, "Properties of Polymers," Elsevier, New York (1980)
  20. Burghardt WR, Yilmaz L, McHugh AJ, Polymer, 28, 2085 (1987)