Polymer(Korea), Vol.22, No.4, 659-669, July, 1998
Multi-fiber Fragmentation시험법을 이용한 Regular 및 Gradual Multi-fiber Composites의 계면특성
A Study on Interfacial Properties of Regular and Gradual Multi-Fiber Composites by Multi-Fiber Fragmentation Test
초록
섬유간의 간격에 의존하는 계면의 특성을 조사하기 위하여 두 형태의 복합재료 모델을 사용하였다. 하나는 균일간격이고, 다른 하나는 단계적 다섬유 복합재료이다. 다섬유 fragmentation시험법이 계면전단강도를 측정하기 위해 사용되었다. Weibull 통계에 의해, 유리섬유의 인장강도와 연신율은 size효과에 의해 게이지 길이가 증가함에 따라 감소하였다. 규칙 및 단계적 다섬유 복합재료로부터는, 섬유간 간격이 증가함에 따라, 섬유파편 길이와 형상비는 감소하는 반면에 계면전단강도는 증가를 보였다. 함유된 섬유수가 증가함에 따라, 계면전단강도는 단계적 다섬유 복합재료에서 감소를 보여 주었다. 단계적 다섬유 복합재료는 섬유간의 거리에 의존하는 응력전달에 대한 직접적인 비교를 제공할 수 있을 것이다.
To investigate the interfacial properties depending on the inter-fiber separation among neighboring fibers, two-typed model composites were used. One is the regular- and another is the gradual multi-fiber composites. The multi-fiber fragmentation test was used to measure the interfacial shear strength (IFSS) for both specimens. According to Weibull statistical analysis, the tensile strength and the elongation for glass fiber decreased with increasing gauge length because of the size effect. For both the regular and the gradual multi-fiber composites, IFSS depended on the distance of the inter-fiber separation. As the inter-fiber separation increased, the fragment length and the aspect ratio decreased whereas IFSS increased. As the number of embedded fibers increased, IFSS decreased for the regular multi-fiber composites. The gradual multi-fiber composite can provide a direct comparison of stress transfer depending on the inter-fiber separation distance compared to the regular multi-fiber composite.
Keywords:Gradual multi-fiber composites;Regular multi-fiber composites;Multi-fiber fragmentation test;Interfacial shear strength;Inter-fiber separation
- Sanadi AR, Piggott MR, J. Mater. Sci., 20, 431 (1985)
- Park JM, Lee SI, Polym.(Korea), 21(4), 689 (1997)
- Park JM, Subramanian RV, Bayoumi AE, J. Adhes. Sci. Technol., 8(2), 133 (1994)
- Park JM, Lee JO, Park TW, Polym. Compos., 17, 375 (1996)
- Park JM, Subramanian RV, J. Adhes. Sci. Technol., 5, 459 (1991)
- Marshall DB, Oliver WC, Mater. Sci. Eng., A126, 95 (1990)
- Li ZF, Grubb DT, J. Mater. Sci., 29(1), 189 (1994)
- Kelly A, Tyson WR, J. Mech. Phys. Solids, 13, 329 (1965)
- Wimolkiatisak AS, Bell JP, Polym. Compos., 10, 162 (1989)
- Drzal LT, Rich MJ, Koenig MF, Lloyd PF, J. Adhes., 16, 133 (1983)
- Li ZF, Grubb DT, Phoenix L, Compos. Sci. Technol., 54, 251 (1995)
- Kim JK, Mai YW, J. Mater. Sci., 30(12), 3024 (1995)
- Accorsi ML, Pegoretti A, Dibenedetto AT, J. Mater. Sci., 31(16), 4181 (1996)
- Vandenheuvel PW, Peijs T, Young RJ, J. Mater. Sci. Lett., 15(21), 1908 (1996)
- Weibull W, J. Appl. Phys., 18, 293 (1951)
- Patankar SN, J. Mater. Sci. Lett., 10, 1176 (1991)
- Wu HF, Netravali AN, J. Mater. Sci., 27, 3318 (1992)
- Goda K, Park JM, Netravali AN, J. Mater. Sci., 30(10), 2722 (1995)