화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.50, No.5, 514-520, 1996
Large-Scale Production of Murine Bone-Marrow Cells in an Airlift Packed-Bed Bioreactor
Large-scale cultivation of murine bone marrow cells was accomplished in an airlift packed bed bioreactor system designed to mimic the in vivo bone marrow environment. The attachment-dependent stromal cell population, which provides the necessary microenvironment, including growth factors for subsequent hematopoietic activity, was first established within the bioreactor. This attachment-dependent cell growth occurred on the fiberglass matrix packed in the annular region of the bioreactor. Once the stromal cell layer was established, fresh bone marrow cells were inoculated to initiate hematopoiesis. However, traditional culture medium was found to be inadequate for the initiation of hematopoiesis, but the use of stromal cell "conditioned" medium (with no exogenously added growth factors) yielded sustained cell production. The extent of stromal cell subculturing prior to inoculation into the bioreactor and the inoculation density were also important factors for the successful initiation of hematopoietic activity. A 500-mL perfusion culture experiment resulted in the production and harvest of 3.6 x 10(8) suspended bone marrow cells over the course of 11 weeks.