화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.18, No.2, 240-246, March, 2001
Hydrodynamic and Mass Transfer Characteristics of External-Loop Airlift Reactors without an Extension Tube above the Downcomer
E-mail:
The effects of the horizontal connection length (0.1≤L(c)≤0.5 m), the downcomer-to-riser cross-sectional area ratio (0.11≤A(d)/A(r)≤0.53) and the superficial gas velocity (0.02≤U(G)≤0.18 ms(-1)) on gas holdups in the riser and downcomer, the circulation liquid velocity, the mixing time, and the overall volumetric mass transfer coefficient were determined in external-loop airlift reactors without an extension tube above the downcomer [configuration (a)]. For otherwise fixed conditions, the absence of the extension tube strongly affected the hydrodynamic and mass transfer characteristics of external-loop airlift reactors. In contrast with the external-loop airlift reactor with the extension tube [configuration (b)], a large air pocket formed in the top horizontal connection and the surface aeration took place in the external-loop airlift reactor without the extension tube [configuration (a)]. As a result, the riser circulation liquid velocity in configuration (a) was slower than that in configuration (b). The riser and downcomer gas holdups, the mixing time and the overall volumetric mass transfer coefficient in configuration (a) were larger than those in configuration (b), respectively.
  1. Akita K, Nakanishi O, Tsuchiya K, Chem. Eng. Sci., 49(15), 2521 (1994) 
  2. Bello RA, Robinson CW, Moo-Young M, Can. J. Chem. Eng., 62, 573 (1984)
  3. Bello RA, Robinson CW, Moo-Young M, Biotechnol. Bioeng., 27, 369 (1985) 
  4. Bello RA, Robinson CW, Moo-Young M, Chem. Eng. Sci., 40, 53 (1985) 
  5. Bentifraouine C, Xuereb C, Riba JP, J. Chem. Technol. Biotechnol., 69(3), 345 (1997) 
  6. Bentifraouine C, Xuereb C, Riba JP, Chem. Eng. J., 66, 91 (1997) 
  7. Benyahia F, Jones L, Petit S, Plantaz D, Chem. Eng. Technol., 19(5), 425 (1996) 
  8. Chisti MY, Moo-Young M, Chem. Eng. Commun., 60, 195 (1987)
  9. Chisti MY, Moo-Young M, Biotechnol. Bioeng., 31, 487 (1988) 
  10. Choi KH, Korean J. Chem. Eng., 16(4), 441 (1999)
  11. Choi KH, Lee WK, J. Chem. Technol. Biotechnol., 56, 51 (1993)
  12. Choi KH, Chisti Y, Mooyoung M, J. Chem. Technol. Biotechnol., 62(4), 327 (1995) 
  13. Choi KH, Chisti MY, Moo-Young M, Chem. Eng. Commun., 138, 171 (1995)
  14. Choi KH, Korean J. Chem. Eng., 13(4), 379 (1996)
  15. Choi KH, Chem. Eng. Commun., 160, 103 (1997)
  16. Choi KH, Han BH, Lee WK, HWAHAK KONGHAK, 28(2), 220 (1990)
  17. Gavrilescu M, Tudose RZ, Chem. Eng. J., 66, 97 (1997) 
  18. Kemblowski Z, Przywarski J, Diab A, Chem. Eng. Sci., 48, 4023 (1993) 
  19. McMamamey WJ, Wase DAJ, Raymahasay S, Thaynithy K, J. Chem. Technol. Biotechnol., 34B, 151 (1984)
  20. Mercer DG, Biotechnol. Bioeng., 23, 2421 (1981) 
  21. Merchuk JC, Siegel H, J. Chem. Technol. Biotechnol., 41, 105 (1988)
  22. Merchuk JC, Stein Y, AIChE J., 27, 377 (1981) 
  23. Merchuk JC, Chem. Eng. Sci., 41, 11 (1986) 
  24. Park CJ, Korean J. Chem. Eng., 16(5), 694 (1999)
  25. Petrovic DLJ, Posarac D, Dudukovic A, Chem. Eng. Commun., 133, 1 (1995)
  26. Popovic M, Robinson CW, Biotechnol. Bioeng., 32, 301 (1988) 
  27. Popovic M, Robinson CW, Chem. Eng. Sci., 42, 2811 (1987) 
  28. Rand MC, Greenberg AE, Taras MJ, "Standard Methods for the Examination of Water and Wastewater," 14th Ed., American Public Health Association, Washington, 87 (1975)
  29. Siegel MH, Merchuk JC, Schugerl K, AIChE J., 32, 1585 (1986) 
  30. Snape JB, Zahradnik J, Fialova M, Thomas NH, Chem. Eng. Sci., 50(20), 3175 (1995)