화학공학소재연구정보센터
Korean Journal of Rheology, Vol.11, No.2, 91-96, June, 1999
Ionic 또는 Nonionic Side Group을 갖는 Polyaniline Suspension의 전기유변특성
Electrorheological Characteristics of Suspensions composed of Polyaniline Derivatives with Ionic or Nonionic Side Groups
초록
반전도성 polyaniline의 유도체들로서 poly(aniline-co-sodium diphenylamine sulfonate), poly(aniline-co-o-ethoxyaniline), poly(o-methylaniline), poly(o-methoxyaniline)를 중합하여 전기유변유체의 입자로 사용하였다. 각 분산액은 전기장하에서 전형적인 전기유변특성을 나타냈으나, 낮은 전단변형률에서의 stress plateau 영역에서 입자의 종류에 따라 다른 흐름특성을 얻었다. 전기유변유체의 전기장에 따른 flow curve 변화와, dynamic yield stress와 전기장 간의 관계로부터 접근한 scaling law를 이용하여 각 전기유변유체의 universal flow curve를 구하였다.
Semiconductive polyaniline and its derivatives such as poly(aniline-co-sodium diphenylamine sulfonate), poly(aniline-co-ethoxyaniline), poly(o-methylaniline), and poly(o-methoxyaniline) were synthesized, and then adopted as suspending particles of the electrorheological (ER) fluids. All suspensions of these polyaniline derivatives showed typical ER properties under high applied electric fields. However, flow behaviors are observed to be quite different depending on the polyaniline derivatives, especially in the stress plateau regions obtained at low shear rates. Using a scaling law, we also obtained universal curves of ER fluids from the flow curves at each applied electric field based on the relationship between the dynamic yield stress with the applied electric field and flow curve changes according to the electric fields.
  1. Winslow WM, J. Appl. Phys., 20, 1137 (1949) 
  2. Uejima H, Jpn. J. Appl. Phys., 11, 319 (1972) 
  3. Conrad H, Chen Y, Sprecher AF, "Proceedings of 3rd International Conference on Electrorheological Fluids," ed. by R. Tao, World Scientific, Singapore, p. 195 (1992)
  4. Gamota DR, Filisko FE, J. Rheol., 35(3), 399 (1991) 
  5. Martin JE, Adolf D, Halsey TC, J. Colloid Interface Sci., 167(2), 437 (1994) 
  6. Cho MS, Choi HJ, Chin IJ, Ahn WS, Microporous Mesoporous Mater., in press (1999)
  7. Klingenberg DJ, van Swol F, Zukoski CF, J. Chem. Phys., 91(12), 7888 (1989) 
  8. Klingenberg DJ, Zukoski CF, Langmuir, 6, 15 (1990) 
  9. Klingenberg DJ, van Swol F, Zukoski CF, J. Chem. Phys., 94(9), 6160 (1991) 
  10. Klingenberg DJ, van Swol F, Zukoski CF, J. Chem. Phys., 94(9), 6170 (1991) 
  11. Klingenberg DJ, J. Rheol., 37(2), 199 (1993) 
  12. Klass DL, Martinek TW, J. Appl. Phys., 38(1), 67 (1967) 
  13. Klass DL, Martinek TW, J. Appl. Phys., 38(1), 75 (1967) 
  14. Filisko FE, Gamota DR, ASME, AMD-153/PEO-141, 75 (1992)
  15. Deinega YF, Vinogradov GV, Rheol. Acta, 23(6), 636 (1984) 
  16. Block H, Kelly JP, J. Phys. D: Appl. Phys., 21, 1661 (1988) 
  17. Havelka KO, Pialet JW, ChemTech, 6, 36 (1996)
  18. Choi HJ, Kim TW, Cho MS, Kim SG, Jhon MS, Eur. Polym. J., 33, 699 (1997) 
  19. Cho MS, Kim TW, Choi HJ, Jhon MS, J. Mater. Sci. Lett., 16(8), 672 (1997) 
  20. Yang IK, Shine AD, J. Rheol., 36, 1079 (1992) 
  21. Leclerc M, Guay J, Dao LH, Macromolecules, 22, 649 (1989) 
  22. Gow CJ, Zukoski CF, J. Colloid Interface Sci., 136, 175 (1990) 
  23. Choi HJ, Kim JW, To KW, Polymer, 40(8), 2163 (1999) 
  24. Lee JH, Cho MS, Choi HJ, Jhon MS, Colloid Polym. Sci., 277, 73 (1999) 
  25. Halsey TC, Science, 258, 761 (1992) 
  26. Jordan TC, Shaw MT, Mcleish TC, J. Rheol., 36, 441 (1992)