화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.11, No.4, 293-304, December, 1999
Constitutive equations for polymer melts and rubbers: Lessons from the 20th century
E-mail:
Refinements of classical theories for entangled or crosslinked polymeric systems have led to incommensurable models for rubber networks and polymer melts, contrary to experimental evidence, which suggests a great deal of similarity. Uniaxial elongation and compression data of linear and branched polymer melts as well as of crosslinked rubbers were analyzed with respect to their nonlinear strain measure. This was found to be the result of two contributions: (1) affine orientation of network strands, and (2) isotropic strand extension. Network strand extension is caused by an increasing restriction of lateral movement of polymer chains due to deformation, and is modelled by a molecular stress function f, which in the tube concept of Doi and Edwards is the inverse of the relative tube diameter. Up to moderate strains, f(2) is found to be linear in the average stretch for melts as will as for rubbers, which corresponds to a constant tube volume. At large strains, rubbers show maximum extensibility, while melts show maximum molecular tension. This maximum value of the molecular stress function governs the ultimate magnitude of the strain-hardening effect of linear and long-chain branched polymer melts in extensional flows.
  1. Ball RC, Doi M, Edwards SF, Warner M, Polymer, 22, 1010 (1981) 
  2. Bernstein B, Kearsley E, Zapas LJ, Trans. Soc. Rheol., 7, 391 (1963) 
  3. Brereton MG, Klein PG, AAPG Bull., 29, 971 (1988)
  4. Currie PK, Polym. Prepr., 23, 6 (1982)
  5. Demarmels A, Meissner J, Rheol. Acta, 24, 253 (1985) 
  6. Demarmels A, Meissner J, Colloid Polym. Sci., 264, 829 (1986) 
  7. Doi M, Edwords SF, Faraday Trans., 74, 1818 (1978) 
  8. Edwards SF, Vilgis T, Polymer, 27, 483 (1986) 
  9. Ermann B, Flory PJ, J. Chem. Phys., 68, 5363 (1978) 
  10. Flory PJ, J. Chem. Phys., 66, 5720 (1977) 
  11. Graessley WW, Adv. Polym. Sci., 47, 67 (1982)
  12. Green MS, Tobolsky AV, J. Chem. Phys., 14, 80 (1946) 
  13. Hachmann P, Multiaxiale Dehnung von Polymer Schmelzen. Dissertation ETH Zurich Nr. 11890 (1996)
  14. Kay A, College of Aeronautics, Cransfield, Note No. 134 (1962)
  15. Kurzbeck S, Oster F, Munstedt H, J. Rheol., 43(2), 359 (1999) 
  16. Larson RG, Constitutive Equations for Polymer Melts and Solutions, Butterworths, London (1988)
  17. Laun HM, Rheol. Acta, 17, 1 (1978) 
  18. Laun HM, Proc. 8th Int. Congr. Rheol., 419-424, Naples (1980)
  19. Leblans PJR, Scholtens BJR, Advances in Elastomers and Rubber Elasticity, J. Lal and J.E. Mark, Eds., Plenum Publishing Corporation (1987)
  20. Lodge AS, Trans. Faraday Soc., 52, 120 (1956) 
  21. Marrucci G, Rheol. Acta, 18, 193 (1979) 
  22. Marrucci G, De Cindio B, Rheol. Acta, 19, 68 (1980) 
  23. Marrucci G, Hermans JJ, Macromolecules, 13, 380 (1980) 
  24. Marrucci G, Grizzuti N, J. Rheol., 27, 433 (1983) 
  25. McLeish TCB, Larson RG, J. Rheol., 42(1), 81 (1998) 
  26. Mead DW, Larson RG, Doi M, Macromolecules, 31(22), 7895 (1998) 
  27. Mullins L, J. Appl. Polym. Sci., 2, 257 (1959) 
  28. Pak H, Flory PJ, J. Polym. Sci. B: Polym. Phys., 17, 1845 (1979)
  29. Pearson DS, Kiss AD, Fetters LJ, Doi M, J. Rheol., 33, 517 (1989) 
  30. Raible T, Stephenson SE, Meissner J, Wagner MH, J. Non-Newton. Fluid Mech., 11, 239 (1982) 
  31. Rivlin RS, Saunders DW, Phil. Trans. Royal Soc. A, 243, 251 (1951)
  32. Roland CM, J. Rheol., 33, 659 (1989) 
  33. Rubio P, Wanger MH, J. Non-Newton. Fluid Mech., to appear (2000)
  34. Scholtens BJR, Leblans PJR, J. Rheol., 30, 313 (1986) 
  35. Smith TL, Trans. Soc. Rheol., 6, 61 (1962) 
  36. Thirion P, Weil T, Polymer, 25, 609 (1984) 
  37. Tsuge K, Arenz RJ, Landel RF, Rubber Chem. Technol., 51, 948 (1978)
  38. Wagner MH, Rheol. Acta, 15, 136 (1976) 
  39. Wagner MH, J. Non-Newton. Fluid Mech., 4, 39 (1978) 
  40. Wanger MH, Rheol. Acta, 18, 33 (1979) 
  41. Wagner MH, Proc. 7th Int. Congr. on Rheol., 541-546, Naples (1980)
  42. Wagner MH, Rheol. Acta, 29, 594 (1990) 
  43. Wagner MH, J. Rheol., 38(3), 655 (1994) 
  44. Wagner MH, Demarmels A, J. Rheol., 34, 943 (1990) 
  45. Wagner MH, Bastian H, Ehrecke P, Kraft M, Hachmann P, Meissner J, J. Non-Newton. Fluid Mech., 79(2), 283 (1998) 
  46. Wagner MH, Bastian H, Hachmann P, Meissner J, Kurzbeck S, Munstedt H, Langouche F, Rheol. Acta, Submitted (1999)
  47. Wagner MH, Laun HM, Rheol. Acta, 17, 138 (1978) 
  48. Wagner MH, Meissner J, Makromol. Chem., 181, 1533 (1980) 
  49. Wagner MH, Schaeffer J, Proc. 11th Int. Congr. on Rheol., Brussels, 118-120 (1992)
  50. Wagner MH, Schaeffer J, J. Rheol., 36, 1 (1992) 
  51. Wagner MH, Schaeffer J, Rheol. Acta, 31, 22 (1992) 
  52. Wagner MH, Schaeffer J, J. Rheol., 37, 643 (1993) 
  53. Wagner MH, Ehrecke P, Hachmann P, Meissner J, J. Rheol., 42(3), 621 (1998) 
  54. Wagner MH, Stephenson SE, J. Rheol., 23, 489 (1979) 
  55. Xu P, Mark JE, Rubber Chem. Technol., 63, 276 (1990)
  56. Yamamoto M, J. Phys. Soc. Jpn., 11, 413 (1956)