화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.12, No.1, 39-53, March, 2000
From rheometry to rheology
E-mail:
Using a variety of examples from the recent literature on extensional flow of polymer solutions, this paper shows that simple constitutive equations are unable to capture the diversity of chain conformations in such flows. Such diversity is a feature of extensional flows and arises because deformation leads to significant chain extension. Substantial local extension appears even at low strains and the behaviour of these stretched out portions influences the dynamics of the chain and makes a dominant contribution to the stress. Both the distribution function and the chain conformation appear to follow different paths during stretching and relaxation. As a result the second moment of the distribution function does not contain enough information to correctly predict the dynamics. Resolution of this deficiency in simple constitutive models is one of the challenges for rheology.
  1. Acierno D, Titomanlio G, Marrucci G, J. Polym. Sci. B: Polym. Phys., 12, 2177 (1974)
  2. Anna SL, McKinley GH, Sridhar T, Muller SJ, Huang J, James DF, An Interlab Comparison of Measurements from Filament-Stretching Rheometers using Common Test Fluids SOR Meeting Madison (1999)
  3. Bird RB, Curtiss CF, Armstrong RC, Hassager O, Dynamics of Polymeric Liquids: Volume 2, Kinetic Theory, 2nd ed., Wiley-Interscience, New York (1987)
  4. De Gennes PG, Tortured Chains: An Introduction Flexible Polymer Chain Dynamics in Elongational Flow, T.Q. Nguyen and H.H. Kausch (ed.), Springer verlag, Berlin (1999)
  5. Doyle PS, Shaqfeh ESG, J. Non-Newton. Fluid Mech., 76(1), 43 (1998) 
  6. Doyle PS, Shaqfeh ESG, McKinley GH, Spiegelberg SH, J. Non-Newton. Fluid Mech., 76(1), 79 (1998) 
  7. Fuller GG, Optical Rheometry of Complex Fluids, Oxford University Press, London (1995)
  8. Gupta RK, Studies on Uniaxial Extension of Dilute Polymer Solutions Ph.D. Thesis, Monash University, Australia (1998)
  9. Gupta RK, Sridhar T, "Elongational Rheometers," in Rheolocial Measurements, ed. A.A. Collyer and D.W. Clegg, Elsevier, London, 211 (1988)
  10. Gupta RK, Nguyen DA, Sridhar T, Phys. Fluids, under review (1999)
  11. Grassia PS, Hinch EJ, J. Fluid Mech., 208, 255 (1996)
  12. Hinch EJ, J. Non-Newton. Fluid Mech., 54, 209 (1994) 
  13. Keunings R, J. Non-Newton. Fluid Mech., 68(1), 85 (1997) 
  14. Kolte MI, Rasmussen HK, Hassager O, Rheol. Acta, 36(3), 285 (1997)
  15. Larson RG, Constitutive Equations for Polymer Melts and Solutions, Butterworths, Boston (1988)
  16. Larson RG, The Structure and Rheology of Complex Fluids, Oxford University Press, New York (1999)
  17. Larson RG, Hu H, Smith DE, Chu S, J. Rheol., 43(2), 267 (1999) 
  18. Li L, Larson RG, Sridhar T, J. Rheol., in press (1999)
  19. Lielens G, Halin P, Jaumain I, Keunings R, Legat V, J. Non-Newton. Fluid Mech., 76(1), 249 (1998) 
  20. McKinley GH, Extensional Flow and Instabilities of Elastic Polymer Solutions Dynamics of Complex Fluids, M.J. Adams, R.A. Mashelkar, J.R.A. Pearson and A.R. Rennie (eds.) Imperial College Press, London (1998)
  21. Orr NV, Dynamics of Polymer Molecules in Extensional Flow, Ph.D. Thesis, Monash University, Clayton (1998)
  22. Orr NV, Sridhar T, J. Non-Newton. Fluid Mech., 67, 77 (1996) 
  23. Orr NV, Sridhar T, J. Non-Newton. Fluid Mech., 82(2), 203 (1999) 
  24. Ottinger HC, Stochastic Processes in Polymeric Fluid, Springer, Berlin (1995)
  25. Perkins TT, Quake SR, Smith DE, Chu S, Science, 264(5160), 822 (1994) 
  26. Perkins TT, Smith DE, Chu S, Single Polymers in Elongational Flows: Dynamic, Steady State, and Population Averaged Properties, Flexible Polymer Chain Dynamics in Elongational Flow, T.Q. Nguyen and H.H. Kausch (ed.), Springer verlag, Berlin (1999)
  27. Perkins TT, Smith DE, Chu S, Science, 276(5321), 2016 (1997) 
  28. Peterlin A, Pure Appl. Chem., 12, 563 (1966)
  29. Petrie CJS, Rheol. Acta, 34(1), 12 (1995) 
  30. Rallison JM, J. Non-Newton. Fluid Mech., 68(1), 61 (1997) 
  31. Remmelgas J, Leal LG, Orr NV, Sridhar T, J. Non-Newton. Fluid Mech., 76(1), 111 (1998) 
  32. Sizaire R, Legat V, J. Non-Newton. Fluid Mech., 71(1), 89 (1997) 
  33. Sizaire R, Lielens G, Jaumain I, Keunings R, Legat V, J. Non-Newton. Fluid Mech., 82(2), 233 (1999) 
  34. Smith DE, Chu S, Science, 281(5381), 1335 (1998) 
  35. Solomon MJ, Muller SJ, J. Rheol., 40(5), 837 (1996) 
  36. Spiegelberg SH, Ables DC, McKinley GH, J. Non-Newton. Fluid Mech., 64(2), 229 (1996) 
  37. Spiegelberg SH, McKinley GH, J. Non-Newton. Fluid Mech., 67, 49 (1996) 
  38. Sridhar T, J. Non-Newton. Fluid Mech., 35, 85 (1990) 
  39. Sridhar T, Nguyen DA, Fuller GG, J. Non-Newton. Fluid Mech., in press (1999)
  40. Sridhar T, Tirtaatmadja V, Nguyen DA, Gupta RK, J. Non-Newton. Fluid Mech., 40, 271 (1991) 
  41. Tirtaatmadja V, Sridhar T, J. Rheol., 37, 1081 (1993) 
  42. Van Den Brule BHAA, J. Non-Newton. Fluid Mech., 47, 357 (1993) 
  43. van Nieuwkoop J, von Czernicki MMOM, J. Non-Newton. Fluid Mech., 67, 105 (1996) 
  44. Wiest JM, Rheol. Acta, 28, 4 (1989) 
  45. Yao MW, McKinely GH, J. Non-Newton. Fluid Mech., 74(1), 47 (1998)