Biotechnology and Bioengineering, Vol.51, No.1, 40-50, 1996
Reaction-Engineering Analysis of L-Lysine Transport by Corynebacterium-Glutamicum
To identify potential L-lysine export limitations by Corynebacterium glutamicum in the L-lysine production process, the excretion of L-lysine was studied in continuous and fed-batch operated stirred tank reactors. A structured biochemical model of the L-lysine excretion mechanism was used to determine the activity of the export carrier and to calculate a cell-specific concentration of the export carrier. for the biochemical characterization of this specific carrier concentration a standardized L-lysine efflux test was developed. Carrier activity, cell-specific carrier concentration, and the specific L-lysine export rate were identified as a function of pH value and L-lysine concentration in the reactors. Also, the correlation of these parameters to the metabolic state of C. glutamicum was determined. The pH value in the reactor governs the carrier activity (maximum at pH 6.5) and the specific carrier concentration (maximum at pH 8.0). The specific L-lysine export rate, as the product of carrier activity and specific carrier concentration, revealed a maximum at pH 7.0. Decreasing L-lysine productivities also correlated with decreasing specific carrier concentrations. Tile L-lysine concentration in the reactor had no effect on the specific carrier concentration but strongly inhibited the carrier activity. The specific export rate was reduced to 50% at 400 mM L-lysine compared to the specific export rate at 80 mM L-lysine.