화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.1, 83-87, February, 2001
수용액에서 고정화된 이산화티타늄을 이용한 구리이온(Ⅱ)의 제거
Removal of Copper Ion(Ⅱ) Using Immobilized Titanium Dioxide in Aqueous Sloutions
E-mail:
초록
0.25∼0.35 mg/㎡로 고정화된 이산화티타늄을 이용하여 수용액으로부터 구리이온을 효율적으로 제거할 수 있는 조건을 제시하기 위한 실험을 실시하였다. 구리이온의 제거효과는 pH 값과 온도가 높아질수록 증가하였다. 나트륨이온이 없는 조건에서 구리이온 제거효과는 높았으나 Na(+)이온농도 2 mg/L의 조건에서 급격히 낮아졌고 Na(+)이온농도 8 mg/L 이상의 조건에서는 제거효과가 거의 없었다. 아나타제형 이산화티타늄보다 루타일형 이산화티타늄의 구리이온 제거효과가 높았으며 아나타제형 이산화티타늄 50%와 루타일형 이산화티타늄 50%를 혼합한 경우의 구리이온 제거효과가 가장 높았다.
We performed the experiments to study an efficient condition for copper-ion removal using the immobilized titanium dioxide with 0.25∼0.35 mg/㎡ in aqueous solutions. The removal of copper ion increased with increased value of pH and temperature. The removal effect increased at zero Na(+) mg/L, but it decreased rapidly at 2 Na(+) mg/L. The removal effect was rarely observed over 8 Na(+) mg/L. The removal effect of copper ion by the rutile-type titanium dioxide was higher than that by the anatase-type titanium dioxide, while that by the mixture of 50% anatase and 50% rutile was highest.
  1. Shim JW, Ryu SK, HWAHAK KONGHAK, 36(6), 903 (1998)
  2. Spark KM, Johnson BB, Wells JD, Eur. J. Soil Sci., 46, 621 (1995) 
  3. Yang HC, Yun JS, Kang MJ, Kim JH, Kang Y, Korean J. Chem. Eng., 16(5), 646 (1999)
  4. Zaporozhets O, Gawer O, Sukhan V, Colloids Surf. A: Physicochem. Eng. Asp., A147, 273 (1999)
  5. Chen F, Zhao JC, Catal. Lett., 58(4), 245 (1999) 
  6. Misra DN, J. Colloid Interface Sci., 28, 24 (1968) 
  7. Hayashi H, Iwasaki T, Onoder Y, Fujiki Y, Chem. Soc. Jpn., 62(11), 3716 (1989) 
  8. Malati MA, McEvoy M, Harvey CR, Surf. Tech., 17, 165 (1982) 
  9. James RO, Healy TW, J. Colloid Interface Sci., 40(1), 53 (1972) 
  10. Camp RT, "Water and Its Impurities", 2nd ed., p. 125, Reinhold, New York, N.Y. (1963)
  11. Ashida M, Saki M, Kan H, Yasunaga T, Hachiya K, Inoue T, J. Colloid Interface Sci., 67(2), 219 (1978) 
  12. Suda Y, Morimoto T, Nagao M, Langmuir, 3, 99 (1987) 
  13. Boonstra AH, Mutsaers CAHA, J. Phys. Chem., 79(18), 1940 (1975) 
  14. Rastogi MC, Dinanath, Singh GP, Indian J. Chem., A20, 652 (1981)
  15. Hitachi Ltd., "Analysis Guide Polarized Zeem Atomic Absorption Spectrophotometry", Hitachi Ltd., 4, Tokyo (1987)
  16. Ray AK, Beenackers AACM, AIChE J., 44(2), 477 (1998) 
  17. Kuo WS, Lin YT, J. Environ. Sci. Health Part B-Pestic. Food Contam. Agric. Wastes, B35(1), 61 (2000)
  18. Pope MI, Sutton DI, Powder Technol., 7, 271 (1973) 
  19. Neufeld RD, M.S. Thesis, Northwestern University, Evanston, Illinois, U.S.A. (1968)
  20. Darren PR, Johnson BB, Joe KS, J. Colloid Interface Sci., 161(1), 57 (1993) 
  21. Rupprecht H, Cosmetics Toiletries, 91, 30 (1976)
  22. Shaw DJ, "Introduction to Colloid and Surface Chemistry", 4th ed., 235, Butterworth-Heinemann Ltd., Oxford (1992)
  23. Kim MS, Chung JG, J. Korean Ind. Eng. Chem., 11(4), 381 (2000)
  24. Swenson RM, Cole CV, Sieling DH, Soil Sci., 67, 3 (1949)
  25. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995) 
  26. Mo SD, Ching WY, Phys. Rev., B, Condens. Matter, 51(19), 13023 (1995)
  27. Kim MS, Chung JG, HWAHAK KONGHAK, 38(1), 38 (2000)