화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.2, 206-212, April, 2001
졸-겔법에 의한 다공성 알루미나 미분체 제조에 관한 연구: II. 물과 알콕시드의 비가 알루미나 미분체의 결정화 공정에 미치는 영향
Synthesis of Porous Al2O3 Particles by Sol-Gel Method: II. The Effect of [H2O]/[Al-alkoxide] on the Crystallization Mechanism of As-prepared Particles
E-mail:
초록
알루미늄 알콕시드의 반응속도를 제어하기 위한 혼합용매와 입자제조 과정에서의 응집을 방지하기 위한 분산제로 HPC를 첨가하는 방법에 의하여 구형의 다공성 알루미나 미분체를 제조하였으며, XRD, FR-IR 및 TG-DTA 분석을 통하여 공정변수로 선정한 물과 알루미늄 알콕시드의 비가 제조된 미분체의 결정화 공정에 미치는 영향에 대하여 고찰하였다. 축중합 반응에 첨가된 물과 Al-알콕시드의 비는 제조된 미분체 및 하소 공정을 거친 미분체의 결정구조에 영향을 미침을 알 수 있었다. [H2O]/[ASB]의 비가 증가할수록 제조된 미분체는 비정질의 Al(OH)3로부터 점진적으로 AlO(OH)의 화학조성을 갖는 의사-보헤마이트로 결정성이 바뀌었다. 그리고 건조 공정을 거친 미분체의 결정성이 좋을수록 δ-와 θ-Al2O3는 저온에서 생성되었으나, α-Al2O3는 고온에서 생성되었다. 이와 같은 결과는 Al(3+)이온의 결정내에서의 배위체 변화와 관계됨을 알 수 있었다. 그리고 [H2O]/[ASB]=2의 조건에서 제조된 입자는 다른 시료와 달리 600 ℃에서 η-Al2O3로 1,100 ℃에서 α-Al2O3로 상전이 되었다.
Spherical porous alumina particles were prepared by mixed solvent to control the reaction rate of Al-alkoxide and the particle shape with hydroxy-propyl cellulose(HPC). HPC was used as a dispersant to prevent aggregation during the formation of particles. The effect of [H2O]/[ASB] ratio on the crystallization reactions of as-prepared particles was studied by XRD, FT-IR, and TG-DTA analysis. The mole ratio of water and Al-alkoxide added in the condensation reaction had an important effect on the crystal structure of as-prepared particles and the calcined particles. As the [H2O]/[ASB] ratio increase, the crystal structure of as-prepared particles was continuously varied from amorphous Al(OH)3 to pseudo-boehmite with chemical composition of AlO(OH). The samples which have higher crystallinite after drying process were transformed into the δ-and θ-Al2O3 at lower calcination temperature, but these sample were transformed into α-Al2O3 at higher calcination temperature. This result was thought to be the transformation of the coordination number of Al(3+) ion in the crystal structure. The particles prepared by [H2O]/[ASB]=2 condition crystallized to α-Al2O3 at 600℃ and converted to η-Al2O3 at 1,100℃ without intermediate phases.
  1. Astier M, Bertrand A, Bianchi D, Villemin B, "Preparation of Catalyst," Ed. Delmon, B., Jacobs, P.A. and Poncelot, G., Elsevier, Brussels, 315 (1976)
  2. Takai Y, Ueno A, Kotera, Bull. Chem. Soc. Jpn., 56, 2941 (1983) 
  3. Yoldas BE, Am. Ceram. Soc. Bull., 54, 286 (1975)
  4. Hwang UY, Lee SG, Koo KK, Park HS, Yoo SJ, Yoon HS, HWAHAK KONGHAK, 37(3), 355 (1999)
  5. Song KC, Kang Y, HWAHAK KONGHAK, 35(6), 805 (1997)
  6. Jean JH, Ring TA, Am. Ceram. Soc. Bull., 65, 1574 (1986)
  7. Ogihara T, Yanagawa T, Ogage N, Yoshida K, J. Ceram. Soc. Jpn., 101, 315 (1993)
  8. Hwang UY, Lee SW, Lee JW, Park HS, Yoo SJ, Yoon HS, Kim YR, HWAHAK KONGHAK, to be submitted (2000)
  9. Zakharchenya RI, Vasilevskaya TN, J. Mater. Sci., 29(10), 2806 (1994) 
  10. JCPDS cards, 26-31, 16-354, 11-517.
  11. Pecharroman C, Gonzalez-Carreno T, Iglesias JE, J. Mater. Res., 11(1), 127 (1996)
  12. Gadsden JA, "Infrared Spectra of Minerals and Related Inorganic Compounds," Batterworths, Reading, Mass. (1975)
  13. Nakamoto K, "Infrared and Raman Spectra of Inorganic and Coordination Compounds," Wiley, New York, 57 (1978)
  14. Chane-Ching JY, Klein LC, J. Am. Ceram. Soc., 71, 86 (1988) 
  15. Komarneni S, Rustum, J. Am. Ceram. Soc., 68(9), c243 (1985)
  16. Sakamoto K, Light Metal Jpn., 22, 295 (1972)