화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.6, 591-598, October, 2000
피크린산의 흡착특성
Adsorption Characteristics of Picric Acid
E-mail:
초록
본 연구에서는 폐수처리과정 중의 하나인 흡착에 의한 피크린산(picric acid; 2,4,6-trinitropheonl)제거를 위하여 미국 Norit사에서 제조되는 활성탄을 사용하여 회분식과 연속흐름식 두 가지 실험을 하였다. 회분식 실험에서는 pH에 따른 흡착의 영향, 온도에 따른 흡착의 경향을 나타내었고 Langmuir 흡착등온식과 Freundlich 흡착등온식 및 Redlich-Peterson 흡착등온식으로 흡착등온선을 해석하였다. 연속흐름실험에서는 최적유속과 총괄흡착속도식을 구하였다. 회분식실험에서는 염기성보다는 산성에서, 입자크기가 작을수록 흡착량이 증가하였고 온도가 낮을수록 흡착량이 증가하였다. 흡착등온식으로 해석한 결과는 Redlich-Peterson 흡착등온식과 Freundlich 흡착등온식이 Langmuir 흡착등온식보다 바람직한 형태를 나타내었다. 연속식흐름실험에서 초기제거속도는 증가하다가 유속이 354.4 mL/min 이후에 일정해지므로 최적유속을 432.4 mL/min로 결정하여 총괄흡착속도식을 구한 결과는 다음과 같다. γ=3.7369 C(fc)(0.5725)-3.2577 C(i)(0.5760) q(e)(0.0120C(i)(0.5344))
In this study, activated carbon manufactured by Norit Co.(U.S.A.) was used for the removal of picric acid by the adsorption process, which is one of the steps involved in a wastewater treatment process. Both batch and continuous flow processes were carried out. From the batch process, pH and temperature effects on adsorption were obtained and Langmuir, Freundlich, and Redlich-Peterson adsorption isotherms were employed to correlate experimental adsorption data. From the continuous flow process, optimum flow rate and overall adsorption rate were obtained. From the batch experiment, adsorption quantity increased in acid rather than in base, and it decreased with smaller particle size and lower temperature. Redlich-Peterson and Freundlich adsorption isotherms were more appropriate than Langmuir adsorption isotherm. From the continuous flow experiment, the initial rate of adsorption increased with increasing flow rate and it became constant at the flow rate of 354.4 mL/min. Optimum flow rate was determined to be 432.4 mL/min in this experiment. The overall adsorption rate for the removal of picric acid was found as follows; γ=3.7369 C(fc)(0.5725)-3.2577 C(i)(0.5760) q(e)(0.0120C(i)(0.5344))
  1. Shaw DJ, "Colloid and Surface Chemistry," 4th ed., 76, Butterworth-Heinmann Ltd., London (1982)
  2. Belfort G, Environ. Sci. Technol., 13, 939 (1979) 
  3. Karanfil T, Kilduff JE, Schlautman MA, Weber WJ, Environ. Sci. Technol., 30, 2187 (1996) 
  4. Weber WJ, Smith EH, Environ. Sci. Technol., 21, 1040 (1987) 
  5. Bercic G, Pintar A, Levec J, Ind. Eng. Chem. Res., 35(12), 4619 (1996) 
  6. Ferreira LM, Lopes E, J. Chem. Eng. Data, 41(4), 698 (1996) 
  7. 문성명, "화학약품 대사전(下)," 1942, 교육서관 (1991)
  8. 정규철, "산업중독편람," 754, 신광출판사 (1995)
  9. Khan AR, Ataullah R, Alhaddad A, J. Colloid Interface Sci., 194(1), 154 (1997) 
  10. Radke CJ, Prausnitz JM, Ind. Eng. Chem. Fundam., 11, 445 (1972) 
  11. Huggahalli M, Fair JR, Ind. Eng. Chem. Res., 35(6), 2071 (1996) 
  12. Snoeyink VL, Weber WJ, Mark HB, Environ. Sci. Technol., 3, 918 (1996) 
  13. DeWalle FB, Light WG, Chlan ESK, Environ. Sci. Technol., 16, 741 (1982) 
  14. Tewari BB, Kamaluddin DM, Colloids Surf. A-Physicochem. Eng. Asp., 131, 89 (1998) 
  15. Bunting JW, Stefanidis D, J. Am. Chem. Soc., 112, 779 (1990) 
  16. Schweiger TA, Ind. Eng. Chem. Res., 35(6), 1929 (1996) 
  17. 전학제, "촉매개론," 2nd ed., 15, 한림원 (1992)
  18. Froment GF, Bischoff KB, "Chemical Reactor Analysis and Design," 2nd ed., 6, John Wiley & Sons Inc., New York (1990)
  19. Levenspiel O, "Chemical Reaction Engineering," 2nd ed., 483, John Wiley & Sons, Inc., New York (1972)
  20. Norit 社, Datasheet
  21. Lenga RE, Votoupal KL, "The Sigma-Aldrich Library of Regulatory and Safety Data," 1, 1595, Sigma Chemical Company & Aldrich Chemical Company (1993)
  22. Slejko FL, "Adsorption Technology," 1, 39, Marcel Dekker, Inc. (1985)
  23. Tchohanoglous G, Burton FL, "Wastewater Engineering," 3rd ed., 2, 314, McGraw-Hill, Inc., New York (1991)
  24. Kim SW, Chung JG, HWAHAK KONGHAK, 37(4), 575 (1999)