Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.8, 936-943, December, 2000
에탄의 초음속 노즐 빔 전환 : 1. 에틴렌, 벤젠, 아세틸렌 및 다른 탄화수소들의 형성
Supersonic Nozzle Beam Conversion of Ethane : 1. Formation of Ethylene, Benzene, Acetylene and Other Hydrocarbons
E-mail:
초록
석영으로 제작된 노즐을 사용하여 에탄의 초음속 노즐 빔 전환 반응을 수행하고 생성물들의 선택성에 미치는 정체 압력(63∼671 torr), 노즐 반응온도 (850∼1150 ℃) 및 노즐 히터의 길이 (1 및 2 ㎝)와 같은 공정 변수들의 영향을 연구하였다. 노즐 빔 전환 반응의 주요 생산물은 에틸렌, 아세틸렌 및 벤젠이었으며, 여러 온도범위에서의 질량 스펙트럼으로부터 다른 CnHm(n=1∼16) 생성물들의 형성이 확인되었다. 이 반응에서는 어떤 특정한 생성물로의 고선택성을 위하여 서로 다른 공정조건들이 요구되었다. 즉, 에틸렌으로의 고선택성은 저온과 짧은 노즐 히터의 사용에 의해 얻어졌다. 벤젠(C6H6)으로의 고선택성은 고온, 고압 그리고 짧은 노즐 히터를 사용했을 때 얻어졌으며, 아세틸렌(C2H2)으로의 고선택성은 고온, 저압 그리고 긴 노즐히터의 사용에 의해 얻어졌다. 서로 다른 공정 조건에서 얻어진 에틸렌, 벤젠 및 아세틸렌으로의 최고 선택성은 각각 약 68%, 18% 및 19%였다. 다른 한편, C8이상의 고비점 탄화수소들의 형성은 고온 고압에서 우세한 것으로 발견되었으며, 이들은 코크 형성 메카니즘의 반응 중간체들로서 초음속 팽창에 의해 포집된 것으로 제안되었다.
Conversion of ethane has been conducted on a supersonic nozzle beam fabricated from quartz. The effect of process variables such as stagnation pressure(63∼671 torr), nozzle temperature(850∼1150 ℃) and heater length (1 and 2 cm) has been investigated. In the nozzle beam conversion, ethylene, acetylene and benzene were produced as the main products. Formation of the other CnHm( n=1∼16) hydrocarbons were identified from the mass spectra within the studied nozzle temperature range. For high selectivity of any specific product, different reaction conditions were required. That is, high selectivity of ethylene was obtained with low temperature and short heater length. The high selectivity of benzene was obtained with high temperature, high pressure and short heater length, while the high selectivity to acetylene was obtained with high temperature, low pressure and long heater length. The maximum values of selectivities of ethylene, benzene and acetylene were ca. 68%, 18% and 19%, respectively. On the other hand, for the formation of higher hydrocarbons above C(8), which may be trapped by supersonic expansion as intermediates on the way for coke formation, high temperature and pressure were found to be favorable.
- Berruti F, Behie LA, "Chemical Reactor Technology for Environmentally Safe Reactors and Products," ed. by H.I. de Lasa et al., 325, Kluwer Academic Publisher, Netherlands (1993)
- Kolts JH, Guillory JP, European Patent, 0205765 A2 (1986)
- Leftin HP, Newsome DS, Wolff TJ, Yarze JC, "Industrial and Laboratory Pyrolyses," ed. by L.F. Albright and B.L. Crynes, 373, American Chemical Society, Washington, D.C. (1976)
- Davis HG, Keister RG, "Industrial and Laboratory Pyrolyses," ed. by L.F. Albright and B.L. Crynes, 392, American Chemical Society, Washington, D.C. (1976)
- Bodke AS, Olschki DA, Schmidt LD, Ranzi E, Science, 285, 712 (1999)
- Goetsch DA, Schmidt LD, Science, 271(5255), 1560 (1996)
- Huff M, Schmidt LD, J. Phys. Chem., 97, 11815 (1993)
- Shebaro L, Abbott B, Hong T, Slenczka A, Friedrich B, Herschbach D, Chem. Phys. Lett., 271, 73 (1997)
- Shebaro L, Bhalotra SR, Herschbach D, J. Phys. Chem. A, 101(36), 6775 (1997)
- Romm L, Somorjai GA, Catal. Lett., 64(2-4), 85 (2000)
- Fenn JB, Annu. Rev. Phys. Chem., 47, 1 (1996)
- Leopold KR, Fraser GT, Novick SE, Klemperer W, Chem. Rev., 94(7), 1807 (1994)
- Castleman AW, Wei S, Annu. Rev. Phys. Chem., 45, 685 (1994)
- Engelking PC, Chem. Rev., 91, 399 (1991)
- Schmidt LD, Huff M, "Catalytic Oxidation," ed. by R.A. Sheldon and R.A. Van Santen, 93, World Scientific, Singapore (1995)
- Levenspiel O, "Engineering Flow and Heat Exchange," Plenum Press, New York (1984)
- Shapiro AH, "The Dynamics and Thermodynamics of Compressible Fluid Flow," Ronald Pres, New York (1953)
- McConnell CF, Head BD, "Pyrolysis: Theory and Industrial Practice," ed. by L.F. Albright, B.L. Crynes and W.H. Corcoran, 25, Academic Press, New York (1983)
- Bradley JN, Frend MA, J. Phys. Chem., 75, 1492 (1971)
- Kiefer JH, Von Drasek WA, Int. J. Chem. Kinet., 22, 747 (1990)
- Chanmugathas C, Heicklen J, Int. J. Chem. Kinet., 18, 701 (1986)
- Goroff NS, Accounts Chem. Res., 29, 77 (1996)
- Chan KYG, Inal F, Senkan S, Ind. Eng. Chem. Res., 37(3), 901 (1998)
- Wang H, Frenklach M, J. Phys. Chem., 98(44), 11465 (1994)