Biotechnology and Bioengineering, Vol.52, No.2, 259-270, 1996
Capillary Electrophoresis of DNA in Uncrosslinked Polymer-Solutions - Evidence for a New Mechanism of DNA Separation
The electrophoretic separation of DNA molecules is usually performed in thin slabs of agarose or polyacrylamide gel. However, DNA separations can be achieved more rapidly and efficiently within a microbore fused silica capillary filled with an uncrosslinked polymer solution. An early assumption was that the mechanism of DNA separation in polymer solution-capillary electrophoresis (PS-CE) is the same as that postulated to occur in slab gel electrophoresis, i.e., that entangled polymer chains form a network of "pores" through which the DNA migrates. However, we have demonstrated that large DNA restriction fragments (2.0-23.1 kbp) can be separated by CE in extremely dilute polymer solutions, which contain as little as 6 parts per million [0.0006% (w/w)] of uncrosslinked hydroxyethyl cellulose (HEC) polymers. In such extremely dilute HEC solutions, far below the measured polymer entanglement threshold concentration, pore-based models of DNA electrophoresis do not apply. We propose a transient entanglement coupling mechanism for the electrophoretic separation of DNA in uncrosslinked polymer solutions, which is based on physical polymer/DNA interactions.
Keywords:POLYACRYLAMIDE-GEL ELECTROPHORESIS;RESTRICTION FRAGMENTS;HIGH-SPEED;ARRAY ELECTROPHORESIS;CONSTRAINT RELEASE;PERFORMANCE;MODEL;REPTATION;OLIGONUCLEOTIDES;RESOLUTION