화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.52, No.4, 485-500, 1996
Optimization of Regulatory Architectures in Metabolic Reaction Networks
Successful biotechnological applications, such as amino acid production, have demonstrated significant improvement in bioprocess performance by genetic modifications of metabolic control architectures and enzyme expression levels. However, the stoichiometric complexity of metabolic pathways, along with their strongly nonlinear nature and regulatory coupling, necessitates the use of structured kinetic models to direct experimental applications and aid in quantitative understanding of cellular bioprocesses. A novel optimization problem is introduced here, the objective of which is to identify changes in the regulatory characteristics of pertinent enzymes and in their cellular content which should be implemented to optimize a particular metabolic process. The mathematical representation of the metabolic reaction networks used is the S-system representation, which at steady state is characterized by linear equations. Exploiting the linearity of the representation, we formulated the optimization problem as a mixed-integer linear programming (MILP) problem. This formulation allows the consideration of a regulatory superstructure that contains all alternative regulatory structures that can be considered for a given pathway. The proposed approach is developed and illustrated using a simple linear pathway. Application of the framework on a complicated pathway-namely, the xanthine monophosphate (XMP) acid guanosine monophosphate (GMP) synthesis pathway-identified the modification of the regulatory architecture that, along with changes in enzyme expression levels, can increase the XMP and GMP concentration by over 114 times the reference value, which is 50 times more than could be achieved by changes in enzyme expression levels only.