화학공학소재연구정보센터
Chemical Engineering Science, Vol.56, No.2, 269-291, 2001
Continuous reactive chromatography
Reactive "simulated moving bed" chromatography (SMBR) is a continuous and counter-current operation combining chemical reaction and adsorptive separation within one single apparatus. Its: application promises substantial improvements in process performance, especially for equilibrium limited reactions involving heat-sensitive products, as, for example, fine chemicals or pharmaceuticals. In this work, a general approach towards the design of a SMBR process is illustrated using the synthesis of methyl acetate, catalyzed by a sulfonated poly(styrene-divinylbenzene) resin, as a model system. Starting from a suitable mathematical representation of the experimentally determined adsorption thermodynamics and reaction kinetics, a model for a reactive chromatographic column is developed and validated. Based on an extension of this model, the SMBR process is investigated through numerical simulation, in order to identify the governing design parameters and to devise an efficient strategy towards process optimization both in terms of productivity and desorbent requirement. Finally. the feasibility of the process for the model system is proved experimentally using a SMBR unit of mini-plant scale.