화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.55, No.6, 927-939, 1997
A Novel Cytostatic Process Enhances the Productivity of Chinese-Hamster Ovary Cells
We have established a novel production process which allows up to fourfold higher production of a model secreted protein, the human secreted alkaline phosphatase (SEAP), in Chinese hamster ovary (CHO) cells. A cytostatic production phase is established in which cell proliferation is inhibited or completely abolished. Such a cytostatic production phase is established by overexpression of the tumor suppressor genes p21, p27, or p53175P (a p53 mutant showing specific loss of apoptotic function) under transcriptional control of a tetracycline-repressible promoter (PhCMV*-1). In order to minimize complications due to possible clonal variation of selected, stable cell lines, our investigations are based on transiently transfected subpopulations, that have become a useful tool in industrial R&D. These subpopulations have been selected by flow cytometry for the expression of genes encoded on a dicistronic expression vector. These vectors contain a dicistronic expression unit consisting of the genes encoding the green fluorescent protein (GFP) or SEAP, followed by one of the cytostatic genes p21, p27 or p53175P encoded by the second cistron. p21, p27 as well as p53175P block the cell cycle of CHO cells in the G1-phase for a prolonged period. However, these G1-arrested cells remain viable and proliferation proficient upon repression of expression of the cytostatic gene. All three of the cytostatic genes studied provided similar regulation of proliferation, and also similar enhancements in SEAP production, suggesting that higher productivity may be a general and intrinsic feature of G1-phase arrested CHO cells. Overall productivity is most likely enhanced because growth-arrested cells do not need to devote cellular resources to biomass production.