화학공학소재연구정보센터
Inorganic Chemistry, Vol.39, No.25, 5779-5786, 2000
Quantitative wavelength-dependent photochemistry of the [CpFe(eta(6)-ipb)]PF6 (ipb = isopropylbenzene) photoinitiator
The photochemically induced arene dissociation reaction of the widely used cationic photoinitiator complex [CpFe-(eta (6)-isopropylbenzene)]PF6 has quantitatively been investigated in several different solvents at 293 K as a function of excitation wavelength at 355, 458, 488, 514, 633, and 683 nm. The complex was excited into the lowest-lying singlet ligand field manifold (355-514 nm) and directly into the corresponding lowest-lying triplet ligand field state (633, 683 nm). Absolute photochemical quantum efficiency (phi (cr)) results reveal that the system exhibits a strong excitation wavelength dependence in each investigated solvent and that the reaction is extremely efficient in the UV and visible regions. The wavelength dependence also reveals that the photochemistry does not occur solely from the lowest-lying ligand field triplet excited state. New insights in terms of both photophysical and mechanistic aspects of this system are obtained from the quantitative photochemical results.