Biotechnology and Bioengineering, Vol.56, No.5, 564-576, 1997
Experimental-Design for the Identification of Macrokinetic Models and Model Discrimination
An experimental design method for the identification of macrokinetic models was developed applying an extended D-optimal design criterion. The D-optimal design criterion was modified to consider variable measurement variances as well as multivariate macrokinetic models. The macrokinetics of formate dehydrogenase (FDH) production with Candida boidinii were thus identified within 10 steady state experiments in a labscale continuous stirred tank reactor (10 model parameters). Closed loop control (nutristat) was applied to set-up the operating states suggested by this experimental design method. After each set of steady state experiments the quality of macrokinetic parameters was characterized statistically. For model discrimination a parameter discrimination algorithm based on entropy formulations was adapted. Again a multivariate criterion considering variable measurement variances was developed. This discrimination algorithm was applied to discriminate the macrokinetic model of FDH production with Candida boidinii out of 10 different macrokinetic approaches. An unequivocal discrimination result could be obtained calculating model specific probabilities. These were compared with commonly used sum of squares values.