화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.79, No.13, 2471-2479, 2001
Characteristics of the nanofiltration composite membranes based on PVA and sodium alginate
Chemically stable nanofiltration (NF) composite membranes based on poly(vinyl alcohol) (PVA) and sodium alginate (SA) (hereafter, these membranes are called PVA/SA composite membranes) were prepared by coating microporous polysulfone (PSF) supports with dilute PVA/SA blend solutions. The PSF supports were pretreated with small monomeric compounds to reduce their pore size and to improve their hydrophilicity before coating with the PVA/SA blend solutions. The concentration of the PVA/SA blend solutions ranged from 0.1 to 0.3 wt %. The membranes prepared in this study were characterized with various methods such as SEM, FTIR, permeation tests, and a-potential measurements. Especially, chemical stabilities of the membranes were tested, using three aqueous solutions with different pHs such as a HCl solution (pH 1), a K2CO3, solution (pH 12.5), and a NaOH solution (pH 13). Their chemical stabilities were compared with that of a polyamide (PA) composite membrane prepared from piperazine (PIP) and trimesoyl chloride (TMC). In this study, it was found that the PVA/SA composite membranes prepared showed not only good chemical stabilities but also good permeation performances in the range from pH 1 to 13.