화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.57, No.5, 552-556, 1998
Thermobarostability of alpha-chymotrypsin in reversed micelles of aerosol OT in octane solvated by water-glycerol mixtures
Thermostability of alpha-chymotrypsin at normal pressure in reversed micelles depends on both an effective surfactant solvation degree and glycerol content in the system. The difference in alpha-chymotrypsin stability in reversed micelles at various glycerol concentrations [up to 60% (v/v)] was more pronounced at high surfactant degrees of solvation, R greater than or equal to 16. After a 1-h incubation at 40 degrees C in "aqueous" reversed micelles (in the absence of glycerol), alpha-chymotrypsin retained only 1% of initial catalytic activity and 10, 22, 59, and 48% residual activity in glycerol-solvated micelles with 20, 30, 50, and 60% (v/v) glycerol, respectively. The explanation of the observed effects is given in the frames of micellar matrix structural order increasing in the presence of glycerol as a water-miscible cosolvent that leads to the decreasing mobility of the alpha-chymotrypsin molecule and, thus the increase of its stability. It was found that glycerol or hydrostatic pressure could be used to stabilize alpha-chymotrypsin in reversed micelles; a lower pressure is necessary to reach a given level of enzyme stability in the presence of glycerol.