화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.59, No.3, 273-280, 1998
I. Study of protein aggregation due to heat denaturation : A structural approach using circular dichroism spectroscopy, nuclear magnetic resonance, and static light scattering
The objective of this study was to investigate the relationship between oxidized RNase A protein structure and the occurrence of protein aggregation using several spectroscopic techniques. Circular dichroism spectroscopy (CD) measurements taken at small temperature intervals were used to determine the protein's melting temperature, T-m, of approximately 65 degrees C in deionized water. A more detailed era mi nation of the protein structure was undertaken at several temperatures around T-m using near- and far-UV CD and one-dimensional nuclear magnetic resonance (NMR) measurements. These measurements revealed the presence of folded structures at 55 degrees C and below, while denatured structures appeared at 65 degrees C and above. Concurrent static light scattering (SLS) measurements, employed to detect the presence of RNase A aggregates, showed that RNase A aggregation was observed at 65 degrees C and above, when much of the protein was denatured. Subsequent NMR time-course data demonstrated that aggregates forming at 75 degrees C and pH 7.8 were indeed derived from heat-denatured protein. However, aggregation was also detected at 55 degrees C when the spectroscopic data suggested the protein was present predominantly in the folded configuration. In contrast, heat denaturation did not lead to RNase A aggregation in a very acidic environment. We attribute this phenomenon to the effect of charge-charge repulsion between the highly protonated RNase A molecules in very acidic pH.