화학공학소재연구정보센터
Journal of Materials Science, Vol.36, No.5, 1105-1117, 2001
Ceria-based materials for solid oxide fuel cells
This paper is focused on the comparative analysis of data on electronic and ionic conduction in gadolinia-doped ceria (CGO) ceramics as well as on the electrochemical properties of various oxide electrodes in contact with ceria-based solid electrolytes. Properties of electrode materials, having thermal expansion compatible with that of doped ceria, are briefly reviewed. At temperatures below 1000 K, Ce0.90Gd0.10O2-delta (CGO10) was found to possess a better stability at reduced oxygen pressures than Ce0.80Gd0.20O2-delta (CGO20). Incorporation of small amounts of praseodymium oxide into Ce0.80Gd0.20O2-delta leads to a slight improvement of the stability of CGO20 at intermediate temperatures, but the difference between electrolytic domain boundaries of the Pr-doped material and CGO10 is insignificant. Since interaction of ceria-based ceramis with electrode materials, such as lanthanum-strontium manganites, may result in the formation of low-conductive layers at the electrode/electrolyte interface, optimization of electrode fabrication conditions is needed. A good electrochemical activity in contact with CGO20 electrolyte was pointed out for electrodes of perovskite-type La0.8Sr0.2Fe0.8Co0.2O3-delta and LaFe0.5Ni0.5O3-delta, and LaCoO3-delta/La2Zr2O7 composites; surface modification of the electrode layers with praseodymium oxide results in considerable decrease of cathodic overpotentials. Using highly-dispersed ceria for the activation of SOFC anodes significantly improves the fuel cell performance.