화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.105, No.9, 1411-1415, 2001
Uptake of methanol vapor in sulfuric acid solutions
The uptake of gas-phase methanol by liquid sulfuric acid has been investigated over the composition range of 40-85 wt % H2SO4 and the temperature range of 210-235 K. Laboratory studies were performed with a flow-tube reactor coupled to an electron-impact ionization mass spectrometer to detect trace gases. While reversible uptake was the primary mechanism at low acid concentrations, an irreversible reaction between methanol and sulfuric acid at low temperatures, forming methyl hydrogen sulfate and dimethyl sulfate, was observed at all concentrations. At compositions >65 wt % H2SO4, more than 90% of uptake was found to be reactive. On the basis of the uptake data and the calculated liquid-phase diffusion coefficients, the product of the effective Henry's law constant (H*) and the square root of the overall liquid-phase reaction rate (k(1)) was calculated as a function of acid concentration and temperature. The results suggest that the reaction with sulfuric acid forming methyl hydrogen sulfate and dimethyl sulfate is the dominant loss mechanism of methanol and that the oxidation of methanol is only a minor source of hydroxyl radicals in the upper troposphere.