화학공학소재연구정보센터
Langmuir, Vol.17, No.2, 268-270, 2001
Stimulated Raman spectroscopy of a K-Promoted catalyst surface: Spectroscopic evidence of K* Rydberg state formation
The direct spectroscopic observation of K* Rydberg states with principal quantum number n = 5 and 6 by anti-Stokes stimulated Raman spectroscopy at a K-promoted iron oxide surface (commercial catalyst for styrene production) proves that such states are formed thermally at surfaces of alkali-promoted heterogeneous catalysts. The K* states can be detected at 1 bar air pressure downward and at normal catalyst operating temperature in a vacuum. They exist in the boundary layer at the surface. Previous reports of the detection of K* Rydberg states from such catalysts using field ionization and laser ionization in a vacuum are thus confirmed. The implications for the reactivity of alkali-promoted catalysts are discussed.