화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.22, No.1, 51-58, February, 1984
고체 추진제의 연소 속도 추정을 위한 새로운 함수 관계식의 도출
A New Approach to the Burning Rate Correlation of Solid Propellants
초록
고체추진제의 연소에 있어서 고체표면과 생성된 연소기체사이에 박막의 기상반응영역이 존재한다는 연소모형을 설정함으로써, 이론적 근거를 가진 새로운 연소속도식 BR=k(1/RT)n exp(Ea/RT)(P/Z)n을 유도하였다. 특히 본 연구에서는 연소속도식의 전개에 있어서 대응상태이론의 압축계수를 도입함으로써, 연소영역내에 존재하는 실제기체의 연소반응을 비이상기체적으로 처리할 수 있었다.
제시된 연소모형의 견실성을 입증하기 위하여, 세가지 타잎의 복합고체 추진제의 실측치를 제시모형의 계산치와 비교검토하였다. 그 결과를 보면 제시모형에 의한 계산치가 연소실내압이 낮을 경우는 물론 높은 경우에도 실측치에 잘 일치하였다. 특히 연소실내압이 1,000 psia이상인 경우에 제시모형은 널리 통용되고 있는 실험적 연소모형, BR=apm 또는 반이론적모, 1/BR=A/P+B/P(1/3)형,에 비해 월등함을 알 수 있었다.
By assuming an effective, rate determing "reaction layer" between the decomposition and flame zones, a new theoretical relation for burning rate of the form, BR=k(1/RT)n exp(Ea/RT)(P/Z)n, has been deduced where BR = burning rate, k, n=constants, Ea = activation energy, Z = mean compressibility factor, P=combustion chamber pressure and T=temperature of reaction zone. Inclusion of compressibility factor in the equation permitted the application of the concept to real situations prevailing in actual design and analysis of propulsion systems.
The proposed model was tested visa vis experimental data and it was concluded that the burning rates predicted by the proposes model is in excellent agreement with the measured values at high as well as low combustion chamber pressures. It was also shown that this model is indeed superior to the conventional empirical model, BR=apm where a, m=constants, and the semiempirical model, 1/BR=A/P+B/P1/3 where A = chemical reaction time parameter and B = diffusion time parameter, particularly in the region where the combustion chamber pressures exceed 1,000 psia.