화학공학소재연구정보센터
Transport in Porous Media, Vol.42, No.3, 265-292, 2001
Hydraulic behavior and contaminant transport in multiple porosity media
The hydraulic behavior and contaminant transport of aquifers containing distinct families of fractures are investigated by using the multiple porosity continuum model. We consider that the conditions are such that a horizontal 2D flow takes place. By writing the continuity of mass (including exchange terms between the various families of fractures) and Darcy's law for each family of fractures, macroscopic equations for both confined and unconfined flow are obtained. A classification procedure and geometrical idealization of the individual fractures for each family is proposed which enables the calculation of the exchange coefficients. Equations for the description of the contaminant transport in the field scale for both confined and unconfined aquifer are developed. It turns out that the adequate formulation of the macroscopic equations and their sink-source term depends on whether the aquifer investigated is confined or unconfined, and also on the value of an nondimensional parameter describing the transfer process at the microscopic scale (connection Peclet number). Numerical investigation of representative problems offers some insight into the behavior of double and triple porosity aquifers.