Applied Biochemistry and Biotechnology, Vol.94, No.1, 51-69, 2001
Metabolic flux analysis of Clostridium thermosuccinogenes -Effects of pH and culture redox potential
Clostridium thermosuccinogenes are anaerobic thermophilic bacteria that ferment various carbohydrates to succinate and acetate as major products and formate, lactate, and ethanol as minor products. Metabolic carbon flux analysis was used to evaluate the effect of pH and redox potential on the batch fermentation of C. thermosuccinogenes. In a first study, the effects of four pH Values (6.50, 6.75, 7.00, and 7.25) on intracellular carbon flux at a constant redox potential of -275 mV were compared. The flux of carbon toward succinate and formate increased whereas the flux to lactate decreased significantly with a pH increase from 6.50 to 7.25. Both specific growth rate and specific rate of glucose consumption were unaffected by changes in pH. The fraction of carbon flux at the phosphoenolpyruvate (PEP) node flowing to oxaloacetate increased with an increase in pH. At the pyruvate node, the fraction of flux to formate increased with increasing pH. At the acetyl CoA node, the fraction of flux to acetate increased significantly with an increase in pH. A second study elucidated the effect of four controlled culture redox potentials (-225, -250, -275, and -310 mV) on metabolic carbon flux at a constant pH of 7.25. Lower values of culture redox potential were correlated with increased succinate, acetate, and formate fluxes and decreased ethanol and hydrogen fluxes in C. thermosuccinogenes. Lactate formation was not significantly influenced by redox potential. At the PEP node, the fraction of carbon to oxaloacetate increased with a decrease in redox potential. At the pyruvate node, the fraction of carbon to formate increased, while at the acetyl CoA node, the fraction of carbon flux to acetate increased with reduced redox potential. The presence of hydrogen in the headspace or the addition of nicotinic acid to the growth media resulted in increased hydrogen and ethanol fluxes and decreased succinate, acetate, formate, and lactate fluxes.
Keywords:Clostridium thermosuccinogenes;anaerobic fermentation;culture redox potential;NADH;metabolic flux;organic acids