Biotechnology Progress, Vol.16, No.2, 146-151, 2000
Production of functional hepatocyte growth factor (HGF) in insect cells infected with an HGF-recombinant baculovirus in a serum-free medium
Three insect cell lines, SL-7B cells derived from Spodoptera litura, Sig, and High Five (Hi-5) cells, were used for the production of pro-hepatocyte growth factor (pro-HGF). Cells were cultured and then infected with a recombinant HGF-containing baculovirus in a serum-free medium. In SL-7B cells, pro-HGF is synthesized and excreted from the cells and late in infection is converted to a heterodimeric form of HGF even when the cells are grown in serum free medium. Conversion of a single-chain form of HGF (pro-HGF) into an I-IGF heterodimer was unexpected as pro-HGF is normally cleaved by a serum protease called HGF activator. The proliferation activity of heparin-affinity-purified HGF from serum-free culture supernatant of SL-7B cells is comparable to that obtained from HGF converted by serum proteases, suggesting that SL-7B cells produce a functionally analogous protease to correctly process pro-HGF. This work reports, for the first time, an the feasibility of properly processing pro-HGF to form functional HGF by proteases from invertebrate cells in serum-free media. Avoiding the supplementation of sera provides the advantages of a low production cost, zero contamination of infectious agents from sera, and simple downstream product purification. Experimental results further demonstrate that the conversion of pro-HGF by insect cells is cell-line-dependent, because proteases in Hi-5 or Sf9 cells could not process pro-HGF as efficiently and properly as those in SL-7B cells.