화학공학소재연구정보센터
Catalysis Letters, Vol.68, No.1-2, 19-24, 2000
The influence of OH groups on the growth of rhodium on alumina: a model study
In order to investigate how the presence of surface hydroxyl groups on oxide surfaces affects the interaction with the supported metal, we have modified a well-ordered alumina film on NiAl(110) by Al deposition and subsequent exposure to water. This procedure yields a hydroxylated alumina surface as revealed by infrared and high-resolution electron energy loss spectroscopy. By means of scanning tunneling microscopy, we have studied the growth of rhodium on the modified film at 300 K. Clear differences in the particle distribution and density are observed in comparison to the clean substrate. While, in the latter case, decoration of domain boundaries as typical defects of the oxide film governs the growth mode, a more isotropic island distribution and a drastically increased particle density is found on the hydroxylated surface. From infrared data, it can be deduced that the growth is connected with the consumption of the hydroxyl groups due to the interaction between the metal deposit and the hydroxylated areas. This finding is in line with photoemission results published earlier.