Journal of Chemical Physics, Vol.109, No.12, 5060-5069, 1998
Soft and hard x-ray Raman scattering by oriented symmetrical molecules: Selection rules, interference, and dephasing mechanisms
Resonant x-ray Raman scattering in chaotical, partial, and fixed oriented symmetric molecules is analyzed for x-ray photon excitation frequencies in both the soft and the hard x-ray regions. Different dephasing mechanisms and their connection with channel interference and the observation of selection rules are investigated. It is predicted that for harder x-ray energies the scattering cross sections become strongly anisotropic and oscillatory due to channel interference. The orientational dephasing is predicted to be an important coherence-blocking mechanism and can be introduced even by zero-point vibrational or librational motions. The connections between selection rules, symmetry and phase factors of the photon wave function, Bragg conditions and the channel interference show that the selection rules may operate for oriented, surface adsorbed, molecules even in the hard x-ray region. The possibility of using the interference effect for structure determination of adsorbates is discussed.