Journal of Chemical Physics, Vol.111, No.4, 1366-1372, 1999
Relativistic regular approximations revisited: An infinite-order relativistic approximation
The concept of the regular approximation is presented as the neglect of the energy dependence of the exact Foldy-Wouthuysen transformation of the Dirac Hamiltonian. Expansion of the normalization terms leads immediately to the zeroth-order regular approximation (ZORA) and first-order regular approximation (FORA) Hamiltonians as the zeroth- and first-order terms of the expansion. The expansion may be taken to infinite order by using an un-normalized Foldy-Wouthuysen transformation, which results in the ZORA Hamiltonian and a nonunit metric. This infinite-order regular approximation, IORA, has eigenvalues which differ from the Dirac eigenvalues by order E-3/c(4) for a hydrogen-like system, which is a considerable improvement over the ZORA eigenvalues, and similar to the nonvariational FORA energies. A further perturbation analysis yields a third-order correction to the IORA energies, TIORA. Results are presented for several systems including the neutral U atom. The IORA eigenvalues for all but the 1s spinor of the neutral system are superior even to the scaled ZORA energies, which are exact for the hydrogenic system. The third-order correction reduces the IORA error for the inner orbitals to a very small fraction of the Dirac eigenvalue.