Journal of Chemical Physics, Vol.111, No.9, 4218-4229, 1999
Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method
We apply the chemical potential equalization (CPE) method to the calculation of the optical spectra in liquid methanol at 298 K and normal pressure. The configurations of the liquid are obtained by conventional molecular dynamics (MD) using a completely flexible all-atoms model. The infrared and Raman spectra are computed a posteriori using a CPE parametrization of methanol calibrated to reproduce the electronic properties of the isolated molecule evaluated with accurate ab initio calculations. The MD/CPE method reproduces correctly the optical spectra in the region of the intermolecular motions. The spectra are discussed and interpreted on the basis of hydrogen bonding structure and dynamics.