화학공학소재연구정보센터
Journal of Chemical Physics, Vol.112, No.18, 8137-8145, 2000
Experimental evidence of structural evolution in ultrafine cobalt particles stabilized in different polymers - From a polytetrahedral arrangement to the hexagonal structure
Ultrafine cobalt particles have been reproducibly synthesized by decomposition of an organometallic precursor in the presence of a stabilizing polymer. The size of the stable monodisperse colloids thus obtained is seen to strongly depend on the nature of the polymer: around 4.2 nm diameter in polyphenylenoxide (PPO) and around 1.4 nm diameter in polyvinylpyrrolidone (PVP). Investigations by wide angle x-ray scattering (WAXS) and high-resolution transmission electron microscopy (HRTEM) give evidence for a size dependence of the structural organization, and hence for a close relationship between structure and synthesis conditions. Co/PPO particles exhibit a hexagonal compact structure with the metal-metal bond length of the bulk material while Co/PVP ones display an original structure. We show that the unusual features of the experimental data in Co/PVP clearly point to a nonperiodic polytetrahedral structure. Successful simulations of the HRTEM and WAXS results have been obtained using models built on the basis of a polytetrahedral arrangement.